

Direct Search for the Neutrino Mass and the KATRIN experiment

Seminar at the Centre de Physique des Particules de Marseille, May 12, 2014

Christian Weinheimer

Institut für Kernphysik, Westfälische Wilhelms-Universität Münster weinheimer@uni-muenster.de

Introduction
Direct Neutrino Mass determination
Rhenium β decay and EC experiments
Tritium β decay experiments
The Karlsruhe Tritium Neutrino expeirment KATRIN Summary and Outlook

Positive results from ν oscillation experiments

atmospheric neutrinos (Kamiokande, Super-Kamiokande, ...)

accelerator neutrinos (K2K, T2K, MINOS,

OPERA, MiniBoone)

solar neutrinos

(Homestake, Gallex, Sage, Super-Kamiokande, SNO, Borexino)

reactor neutrinos (KamLAND, CHOOZ, Daya Bay, DoubleCHOOZ, RENO, ...) $\Rightarrow \textbf{non-trivial } \boldsymbol{\nu}-\textbf{mixing}$ $\begin{pmatrix} \boldsymbol{\nu}_{e} \\ \boldsymbol{\nu}_{\mu} \\ \boldsymbol{\nu}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$

with:

0.34 < $\sin^{2}(\theta_{23})$ < 0.64 maximal! 0.26 < $\sin^{2}(\theta_{12})$ < 0.36 large ! $\sin^{2}(\theta_{13}) = 0.089 + - 0.010 + - 0.005$ 7.0 10⁻⁵ eV² < Δm_{12}^{-2} < 8.2 10⁻⁵ eV² 2.1 10⁻³ eV² < $|\Delta m_{13}^{-2}|$ < 2.7 10⁻³ eV² ⇒ $m(v_{i}) \neq 0$, but unknown !

Need for the absolute v mass determination

Need for the absolute v mass determination

Need for the absolute v mass determination

Three complementary ways to the absolute neutrino mass scale

1) Cosmology

very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.5 \text{ eV}$

Neutrino mass from cosmology

measurement of CMBR (Cosmic Microwave Background Radiation)

D.N. Spergel et al., astro-ph/0302209

Neutrino mass from cosmology

measurement of CMBR (Cosmic Microwave Background Radiation)

measurement of matter density distribution LSS (Large Scale Structure) 2dF, SDSS, ...

2dF:M. Colless et al., MNRAS 328 (2001) 1039SDSS:M. Tegmark et al., Astrophys.J. 606 (2004) 702-740

Christian Weinheimer CPPM Marseille, May 12, 2014 8

WMAP

Neutrino mass from cosmology

measurement of matter density distribution LSS (Large Scale Structure) 2dF, SDSS, ...

big bang theory: neutrino density in universe $n = 336 / cm^3$

 $n_v = 336 / cm^3$

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

WMAP

Neutrino mass from cosmology

measurement of CMBR (Cosmic Microwave Background Radiation)

measurement of matter density distribution LSS (Large Scale Structure) 2dF, SDSS, ... neutrino density in universe

big bang theory:

model development

← National Center for SuperComputer Simulations, http://cosmicweb.uchicago.edu/sims.html

Millenium simulation \rightarrow http://www.mpa-garching.mpg.de/galform/presse/

Neutrino mass from cosmology

time-varying neutrino mass and connection to dark energy

O.E. Bjaelde et al. (astro-ph/0705.2018): v coupling to scalar field leads v time-varying neutrino mass and connection to dark energy

 $\Sigma m_{\rm el}$ (eV)

Three complementary ways to the absolute neutrino mass scale

1) Cosmology

very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.5 \text{ eV}$

2) Search for \mathbf{0}\nu\beta\beta

Sensitive to Majorana neutrinos First upper limits by EXO-200, KamLAND-Zen, GERDA

Double β decay

WESTFÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

Current and future double β decay experiments

First results from GERDA phase 1

New background reduction methods:

- phase 1: 18 kg enriched Ge detectors in LAr
- phase 2: point contact detectors p-type (BEGe) to identify multi-side events and use scintillation of LAr shield as veto

Three complementary ways to the absolute neutrino mass scale

spectrum P(k) [(h⁻¹ Mpc)^a]

볋

1) Cosmology

very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.5 \text{ eV}$

2) Search for $0\nu\beta\beta$

Sensitive to Majorana neutrinos First upper limits by EXO-200, KamLAND-Zen, GERDA

3) Direct neutrino mass determination:

No further assumptions needed, use $E^2 = p^2c^2 + m^2c^4 \Rightarrow m^2(v)$ is observable mostly **Time-of-flight measurements** (v from supernova) SN1987a (large Magellan cloud) $\Rightarrow m(v_e) < 5.7 \text{ eV}$ **Kinematics of weak decays / beta decays** measure charged decay prod., E-, p-conservation β -decay searchs for $m(v_e)$ - tritium β spectrometers - ${}^{187}\text{Re}$, ${}^{163}\text{Ho bolometers}$

Christian Weinheimer CPPM Marseille, May 12, 2014 17

Comparison of the different approaches to the neutrino mass

Direct kinematic measurement:

Neutrinolesss double β decay:

 $m_{\beta\beta}(v) = |\Sigma| |U_{ei}^2| e^{i\alpha(i)} m(v_i)|$

 $m^{2}(v_{e}) = \Sigma |U_{ei}|^{2} m^{2}(v_{i})$

(incoherent) (coherent)

if no other particle is exchanged (e.g. R-violating SUSY) problems with uncertainty of nuclear matrix elements

 \Rightarrow absolute scale/cosmological relevant neutrino mass in the lab by single β decay

Direct neutrino mass determination

Direct determination of $m(v_e)$

from β decay

Summary: β-spectrum Westfälische incl. electronic final states + v mixing WILHELMS-UNIVERSITÄT

MÜNSTER

Cryogenic bolometers, e.g. with ¹⁸⁷Re

Westfälische

Measures temperature rise by β -decay in an absorber

→ all energy except that of the neutrino is measured

 → "single final state experiment", no problems with inelastic scattering, backscattering, …

Disadvantage:

measure whole spectrum at once

 \rightarrow pile-up problem

 \rightarrow need many detector pixels

Cryogenic bolometers with ¹⁸⁷Re MIBETA (Milano/Como)

Measures all energy except that of the neutrino detectors: 10 (AgReO₄) rate each: 0.13 1/s energy res.: $\Delta E = 28 \text{ eV}$ pile-up frac.: 1.7 10⁻⁴

 M_{v}^{2} = -141 ± 211 _{stat} ± 90 _{svs} eV²

M_v < 15.6 eV (90% c.l.)

(M. Sisti et al., NIMA520 (2004) 125)

MANU (Genova)

- Re metalic crystal (1.5 mg)
- BEFS observed (F.Gatti et al., Nature 397 (1999) 137)
- sensitivity: m(v) < 26 eV (F.Gatti, Nucl. Phys. B91 (2001) 293)

MARE neutrino mass project: WILHELM5-UNIVERSITÄ187 Re β-decay with cryogenic bolometers

Advantages of cryogenic bolometers:

WESTFÄLISCHE

- measures all released energy except that of the neutrino
- no final atomic/molecular states
- no energy losses
- no back-scattering

Challenges of cryogenic bolometers:

- measures the full spectrum (pile-up)
- need large arrays to get statistics
- understanding spectrum
- still energy losses or trapping possible
- beta environmental fine structure

MARE-1 @ Genova

MARE-2 aims for 10⁴ to 10⁵ detectors with much more advanced time & energy resolution

- R&D effort for Re single crystals on transition edge sensors (TES)
- → improve rise time to ~ µs and energy resolution to few eV
- large arrays (≈10³ pixels) for 104-105 detector experiment
- high bandwidth, multiplexed SQUID readout
- also used with ¹⁶³Ho loaded absorbers

MARE-1 @ Milano-Bicocca

- 6x6 array of Si-implanted thermistors (NASA/GSFC)
- 0.5 mg AgReO₄ crystals
- ΔE ≈ 30 eV, τ_R ≈ 250 μs
- experimental setup for up to 8 arrays completed
- starting with 72 pixels in 2011
- up to 10¹⁰ events in 4 years \rightarrow ~ 4 eV sensitivity

Angelo Nucciotti, Meudon 2011 Christian Weinheimer CPPM Marseille, May 12, 2014

MARE neutrino mass project:

WILHELMS-UNIVERSITÄ¹⁸⁷Re β -decay with cryogenic bolometers

Advantages of cryogenic bolometers:

WESTFÄLISCHE

- measures all released energy except that of the neutrino
- no final atomic/molecular states
- no energy losses
- no back-scattering

Challenges of cryog

- measures the full s
- need large arrays
- understanding spe
- still energy losses
- beta environmenta

MARE-2 aims for 10⁴ to 10⁵ detectors with much more advanced time & energy resolution

MARE-1 @ Milano-Bicocca

 6x6 array of Si-implanted thermistors (NASA/GSFC)

MARE is not anymore proceeded due to severe problems a) to build high-resolution and fast cryo-

- bolometers with Rhenium absorbers
- b) there is a better idea: electron capture of ¹⁶³Ho

\rightarrow experiments: ECHo, HOLMES

104-105 detector experiment

- high bandwidth, multiplexed SQUID readout
- also used with ¹⁶³Ho loaded absorbers

Angelo Nucciotti, Meudon 2011 Christian Weinheimer CPPM Marseille, May 12, 2014 25

<u>-</u>

ECHo neutrino mass project: ¹⁶³Ho electron capture with metallic magnetic calorimeters

MMCs: 1d array for soft X-rays (T=20mK) by the Heidelberg ECHo group

<u></u> The classical way: WESTFÄLISCHE WILHELMS-UNIVERSITÄT Tritium β-spectroscopy with a MAC-E-Filter

The Karlsruhe Tritium Neutrino Experiment KATRIN

- The KATRIN collaboration is based on strong international (US, CZ, RUS, UK) & national partners with unique expertise in many key technological areas
- Uniting the world-wide expertise in tritium β-decay

The KATRIN experiment - overview

Molecular Windowless Gaseous Tritium Source WGTS

Very successful cool-down and stability tests of the WGTS demonstrator

tritium source systematics – a review

- near-time monitoring tools & quasi 3-D source model
 - extensive sensor instrumentation & control/monitoring systems M
 - successful large-scale test experiments (WGTS demo, LARA, loops) 🗹
 - improved source modelling: quasi-3D model of gas flow <a>S

M. Babutzka et al.,

Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source New Journal of Physics 14 (2012) 103046

M. Hötzel et al.,

Accurate computation of the integrated tritium B-spectrum near the endpoint energy for KATRIN to be subm. to New J. of Phys.

Measurement of tritium concentration by laser Raman spectroscopy

÷

Tritium loops at Tritium Laboratory Karlsruhe

Transport and differential & cryo pumping sections

F. Eichelhardt et al, Fusion Science and Technology 54 (2008) 615

O. Kazachenko et al., NIM A 587 (2008) 136 Christian Weinheimer CPPM Marseille, May 12, 2014 36

Electromagnetic design: magnetic fields

Christian Weinheimer CPPM Marseille, May 12, 2014 37

KATRIN main spectrometer

Spectrometer:

- huge size: 10m diameter, 24m length
 - 1240 m³ volume, 690 m² inner surface
- ultra-high energy resolution: $\Delta E = 0.93 eV$
- vacuum vessel on precise high voltage

Background reduction:

- ultra-high vacuum: $p = O(10^{-11} \text{ mbar})$
- reduce cosmic ray induced bg by wire electrode
- reduce radon induced bg by cryo baffles
- eject stored electrons by active measures

Main spectrometer history

Christian Weinheimer CPPM Marseille, May 12, 2014 39

The detector

Requirements

- detection of β -electrons (mHz to kHz)
- high efficiency (> 90%)
- low background (< 1 mHz) (passive and active shielding)
- good energy resolution (< 1 keV)

Properties

- 90 mm Ø Si PIN diode
- thin entry window (50nm)
- detector magnet 3 6 T
- post acceleration (30kV) (to lower background in signal region)
- segmented wafer (148 pixels)
 - → record azimuthal and radial profile of the flux tube
 - \rightarrow investigate systematic effects
 - \rightarrow compensate field inhomogeneities

As smaller m(v) as smaller the region of interest below endpoint E_0 \rightarrow quantum mechanical thresholds help a lot !

A few contributions with $\Delta m_v^2 \leq 0.007 \text{ eV}^2$ each:

Systematic uncertainties

KATRIN's sensitivity

⇒ KATRIN will improve the sensitivity by 1 order of magnitude
 will check the whole cosmological relevant mass range
 will detect degenerate neutrinos (if they are degen.)

Suppress secondary electron background from walls on high potential

Secondary electrons from wall/electrode by cosmic rays, environmental radioactivity, ... New: double layer wire electrode on slightly more negative potential (ca. 23,000 wires, 200 µm precision, UHV compatible)

Background suppression successfully tested at the Mainz MAC-E filter:

Two-layer wire electrode modules installation inside main spectrometer

<u>+</u>

Secondary electron background from radon decays from getter pumps

^{219,220}**Rn emanation** mainly from SAES getter pumps (iron vanadium zirconium alloy)

shake-off, Auger, conversion electrons can get stored

background process continues:

- $\ensuremath{^\circ}$ ionization of residual gas \rightarrow secondary electrons
- primary electron energies: 100 eV < E < 500 keV
- up to 5000 secondary electrons per stored primary
- significant background increase for hours

rapid cyclotron motion intermediate axial oscillation slow magnetron drift

Radon elimination by LN₂-cooled baffles in the main spectrometer

Prepare for spectrometer and detector commissioning: out-baking

Vacuum conditioning for the commissioning measurements

- aim: UHV in huge spectrometer: p ≈ 10⁻¹¹ mbar
- to do: spectrometer bake-out at T = 300 °C also to activate SAES getter pumps
 → 1000 000 I/s pumping speed
- achieved in January 2013

Primary objectives:

- test of individual hardware, software and slow control components
- provide ultra high vacuum conditions at the $p\,\approx\,10^{\text{--}11}$ mbar level
- detailed understanding of the transmission properties of this MAC-E-Filter (E = 18.6 keV with Δ E = 0.93 eV resolution) and compare to simulation with Kasseiopeia
- detailed understanding and passive & active control of background processes

Westfälische Wilhelms-Universität MÜNSTER First switch on with full high voltage on August 13/14, 2013

χ^2 / ndf 52.23 / 59 Event Rate Rate (cps) 2.5 **p**0 0.9946 ± 0.04071 3ackground rate (cps) 2 10-2 1.5 0.5 2.10-3 0 100 200 300 600 time (s) 400 500

Could switch on main spectrometer without large background rate all other MAC-E-Filters (Troitsk, Mainz, KATRIN pre spectrometer) exhibited rates > 10^5 cps when switched on for the first time \rightarrow No large Penning traps (advanced KATRIN design works)

This first measurement without wire electrode on screening potential, LN₂ baffles cold and active counter measures against stored electrons

But still KATRIN requires a background rate of **10⁻² cps**

A new pulsed angular-defined UV LED photoelectron source

WESTFÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

UV LED photoelectron source for the main spectrometer

Test of transmission function

Christian Weinheimer CPPM Marseille, May 12, 2014 53

Commissioning of main spectrometer and detector

Understanding the background: Radon and other background sources

Background suppression by dual layer wire electrode

Background from stored electrons: methods to avoid or to eliminate them

Time

69e-05

1.20e-05

8.00e-06

4.00e-06

9.966-09

Trans Momentum 1,74e-23

1.60ə-23

1.200-23

8.009-24

Stored electron by magnetic mirrors F. Fränkle et al., Astropart. Phys. 35 (2011) 128

radial E x B drift

due to electric

dipole pulse

G. Drexlin et al., arXiv:1205.3729

Radon suppression by LN₂ cooled baffle

Nulling magnetic field by magn. pulse B. Hillen, PhD thesis, Münster

Mechanical eliminating stored particles: M. Beck et al, Eur. Phys. J. A44 (2010) 499

First tests of active background removal by E x B drift

Active stored particle removal by electric dipole and magnetic zeroing

Christian Weinheimer CPPM Marseille, May 12, 2014 59

And finally ...

from 11 subsequent positions of the scanning photoelectron source Waiting for commissioning measurements phase 2 in sommer/automn 2014 with

- dual layer wire electrode (in central part at least)
- better egun
- better alignment
- better high voltage settings
- full magnetic zeroing
- full operational LN2 baffles

Can KATRIN be largely improved ?

Problems

- 1) The source is already opaque
 - → need to increase size transversally
 but a Ø100m spectrometer is not feasible

2) Resolution is limited to σ = 0.34 eV by the excitation of ro-vibrational states in the final state when using molecular tritium

Can KATRIN be largely improved ?

Problems The source is already opaque 1) \rightarrow need to increase size transversally but a Ø100m spectrometer is not feasible Two possible ways out: a) source inside detector using cryogenic bolometers (ECHo, HOLMES) b) hand-over energy information of β electron to other particle (photon), which can escape tritium source (Project 8) 2) Resolution is limited to σ = 0.34 eV by the

2) Resolution is limited to $\sigma = 0.34$ eV by the excitation of ro-vibrational states in the final state when using molecular tritium

Not really realistic yet:

c) atomic tritium source Unfortunately, it is technically really a challenge

- Is it really possible ?
- What are the systematic uncertainties ?

Can KATRIN be improved a bit ?

Alternative spectroscopy: measure time-of-flight TOF through KATRIN spectrometer

Westfälische Wilhelm5-Universität Münster

<u>_</u>

Alternative spectroscopy: measure time-of-flight TOF through KATRIN spectrometer

Westfälische Wilhelms-Universität Münster

Sensitvity improvement on $m^2(v_e)$ by ideal TOF determination

Measure at 2 (instead of \approx 30) different retarding potentials since TOF spectra contain all the information

Coincidence request between start and stop signal \rightarrow nice background suppression

 \rightarrow Factor 5 improvement in m²_v w.r.t. standard KATRIN, but ideal case !

How to measure time-of-flight at KATRIN ? \rightarrow gated-filter

1) Can measure time-of-arrival with KATRIN detector with Δt = 50 ns \rightarrow ok

2) Need to determine time-of-passing-by of beta electron before main spectrometer without disturbing energy and momentum by more than 10 meV !

 \rightarrow Need "detector" with 10 meV threshold

This seems not to be prohibited in principle but it is unrealistic for the near future !

2') Use pre spectrometer as a "gated-filter" by switching fast the retarding voltage

MAC-E-TOF demonstrated: J. Bonn et al., Nucl. Instr. Meth. A421 (1999) 256 no problem with transmission properties: M. Prall et al., NJP 14 (2012) 073054

About as sensitive on the neutrino mass as standard KATRIN: N. Steinbrink et al., NJP 15 (2013) 113020

Summary & Outlook

Neutrinos do oscillate → non-zero neutrino mass which is very important for nuclear & particle physics (which model beyond the Standard Model ?) for cosmology & astrophysics (evolution of the universe)

3 complementary approaches to the neutrino mass: cosmology, $0\nu\beta\beta$, direct (no further assumptions)

KATRIN is the next generation direct neutrino mass experiment with 0.2 eV sensitivity and to sterile eV and keV neutrinos ...

2013-2014: commissioning of spectrometer & detector 2014-2016: commissioning of tritium source & elimination lines 2016- : regular data taking for 5-6 years (3 full-beam-years)

ECHo, HOLMES: cryo-bolometers measuring ¹⁶³Ho EC Can they archieve similar sensitivites to KATRIN? Still a long way to go

1000 100 Mass Limit (eV) 10 🔺 Best sens. m _{Va} **KATRIN** Calorimetry best sens. m_{Va} 0.1 J.F. Wilkerson, Neutrino 2012 0.01 1990 2000 2010 2020 1950 1960 1970 1980 Year

Quite different attempts: Project 8, ...