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AEgIS:

• Main goal:  Measurement of  g with 1% precision* on antihydrogen

• Proposed in 1997 by Tom Phillips (Duke U)
[T. J. Phillips, Hyp. Int. 109 (1997) 357]

• Requirements / challenges:
– Production of a  bunched  cold  beam  of antihydrogen (100 mK)

– Measurement of vertical beam deflection  (10 μm drop over 1 m)

antiproton trap

acceleration
region

deflectometer

positronium
converter
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* (initially)

‐ Antimatter Experiment: Gravity, Interferometry,
Spectroscopy

  ep HPs
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Baryon asymmetry

• No evidence of (primary) antimatter
anywhere in the universe today

• 1998:  AMS‐01 experiment

• All matter (and antimatter) was created 
in the big bang 13.8 billion years ago

• Most matter and antimatter annihilated 
to photons soon after

• But: there is some matter left!

Alpha Magnetic Spectrometer
on board space shuttle Discovery

observed
3×106 He nuclei
0 He nuclei
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Where is the antimatter?
• Baryon asymmetry:

 Tiny deviation is responsible for the existence of all baryonic matter!

• Possible explanations:

2. Anomalous gravitation, segregation in different
parts of the universe

1. Difference in matter/antimatter properties
(CP or CPT violation)

Today:13.8 billion years ago:

We are
here
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Precision tests with antimatter

• Since 2002 copious amounts of neutral antiatoms available
 antihydrogen is an ideal test body for these fundamental tests
[M. Amoretti et al., Nature 419 (2002) 456; G. Gabrielse et al., Phys. Rev. Lett. 89 (2002) 213401]

• Test of CPT symmetry
Baryon asymmetry

 difference in properties ?

• Antimatter gravity
Test of weak equivalence principle with 
antimatter

C  – charge conjugation

P  – inversion of spatial coordinates

T  – time reversal
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Antimatter gravity
• Weak equivalence principle (WEP):

“The trajectory of a falling test particle is
independent of its composition.”

• WEP extremely well tested with matter, but never with
antimatter  (electric charge of subatomic particles)

• Gravity is the only force not described by a quantum
field theory

• QFT formulations of gravity open the way for
– Non‐Newtonian gravity
– WEP violation
– Fifth forces etc.
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Quantum gravity
• Quantum gravity could accommodate non‐Newtonian components
(scalar, vector), coupling to various charges…

• Hypothetical exchange particles:

• Quantum gravity potential (static limit):

• Non‐Newtonian terms could  (almost)  cancel out
if  αv ≈ αs and  λv ≈ λs , but produce a striking effect on antimatter

• Tensor graviton (Spin 2, “Newtonian”)

• Vector graviton (Spin 1)

• Scalar graviton (Spin 0)

always attractive

repulsive between like charges

always attractive







  sv λ

r

s
λ
r

v eαeα
r
mGmV 121

where αv, λv – vector c.c./range
αs, λs – scalar c.c./range
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The Morrison argument

– Energy conservation violated if  g = −g
– Valid argument against anti‐tensor gravity
– Irrelevant for other scenarios (scalar/vector,

other couplings)

zggmmcE )(2 2
1 

2
0 2mcE 

height  z

2
2 2mcE 

annihilation

height  z

zmgmcE γ22 2
3 

pair production

[P. Morrison, Am. J. Phys. 26 (1958) 358;
M. M. Nieto & T. Goldman, Phys. Rep. 205 (1991) 221]
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Indirect experimental limits on antigravity
A. “Newtonian experiments”  (force / acceleration / deflection)

– Eötvös‐type experiments, “Fifth force” searches

– Fraction of nuclear mass due to virtual antiquarks

 Coupling of gravity to virtual particles not understood;  antimatter content fractions
between different nuclides might not differ

B. “Einsteinian experiments”  (red shift / rescaling of observed time)
– p/ cyclotron frequency, K0–K0 non‐regeneration (beyond CP violation)

– Despite CPT invariance, observed frequencies influenced by spacetime metric:  αg < 5×10−4

– K0–K0 oscillation rate dependent on gravitational potential:  αg < 2×10−9

 Depends on CPT invariance, absolute gravitational potential, choice of potential

C. Astronomical (anti‐)neutrino observations
– Contribution to flavor oscillations due to gravitational potential

Solar neutrinos:  αg < 0.2 or 2×10−4, depending on potential  (Earth, galactic supercluster)

– Supernova SN1987A ν/ν arrival time:  αg < 0.5%  (galactic supercluster)

 Restricted to neutrino sector;  depends on absolute gravitational potential

[T. Ericson & A. Richter, Europhys. Lett. 11 (1990) 295; E. Adelberger et al., Phys. Rev. Lett. 66 (1990) 850;
M. M. Nieto & T. Goldman, Phys. Rep. 205 (1991) 221; S. Bellucci & V. Faraoni, Phys. Rev. D 49 (1994) 2992;
M. Fischler et al., Fermilab report FN‐0822‐CD‐T (2008)]
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Did I say “never been measured”?
• ALPHA: 2013 reanalysis of 2010/2011 data

• Release of  Ħ from magnetic trap at 0.5 K
(trap shutoff time constant τ ≈ 9.5 ms)

• 434 annihilation events observed

• Vertical position of annihilations:
Mirror coils
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• Result:

(95% confidence level)

• Compare with “worst case” expectation:

g = (−65..+110) g

g = (−1..+2) g

[C. Amole et al., Nature Comm. 4 (2013) 1785]

– red circles: data

– green dots: simulation for g/g = 100
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Antiproton Decelerator at CERN

– 107  produced
every ≈ 90 s

– Deceleration
p = 3.5 GeV/c 

 100 MeV/c

– Fast extraction
(200‐ns bunches)

AD PS

Protons
Antiprotons

10
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AD experiments

ASACUSA

ALPHA

ATRAP

st
oc
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g
electron cooling

antiproton
production

1

injection at 3.5 GeV/c2

deceleration and
cooling
(3.5–0.1 GeV/c)

3

extraction
(≈2×107 in 200 ns)

4

100 20 m

AEGIS

[J. Y. Hémery & S. Maury, Nucl. Phys. A 655 (1999) 345c]
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Antiproton Decelerator hall
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Experimental sequence
• Principle sketch (not to scale):

1)   Antiproton capture & cooling

2)   Positron production

3)   Positronium conversion

4)   Positronium excitation

5)   Antihydrogen recombination

6)   Antihydrogen beam formation

7)   Gravity measurement

8)   Data analysis

  ep HPs

e

p
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AEGIS overview sketch

Positron source
and accumulator

Dilution cryostat

Lasers

Transfer
beam line

Moiré
deflectometer

Particle
detectors

Position‐sensitive
detector

AD beam
line

Antihydrogen
production

Positronium
production &
excitation

Antiproton
& positron
trapping
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1)  Antiproton capture and cooling
• Energy reduced by 50‐µm Al degrader foil

• Trapping sequence:
1. Trap is prepared with plasma of

108 cold electrons
2. Small fraction of antiprotons with

E < 5 keV is reflected
3. Axial potential on entrance side is

raised to trap  
4. Antiprotons are sympathetically

cooled by electrons

• Trap cooled to 100 mK by a dilution
refrigerator

e-

degrader

t = 200 ns

t = 500 ns

t = few s

99.9% lost
0.1%

E < 5 keV

solenoid magnet B = 5 T

z

z

z
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p

> 104 antiprotons @ 100 mK
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2)  Positron production & accumulation

• Trapping & cooling sequence:
– Confinement in 0.14‐T trap

– Deceleration in N buffer gas

– Accumulation in axial electric‐
field minimum

• Production from β+ emitter:

• Moderation to 50 eV in solid neon

eνe  NeNa 2222
thermal shield

copper cone22Na source

sapphire

CuBe

20 mm

10-3 mbar 10-4 mbar 10-7 mbarN pressure

po
te

nt
ia

l

z

e+

positron
“pool”

0 0.5 m

[M. Amoretti et al., Nucl. Instrum. Methods A 518 (2004) 679]

≈ 108 positrons every 200 s
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2)  Positron production & accumulation
• Positron displacement by diocotron excitation:

– Plasma is brought into autoresonance with
driving diocotron signal

– Plasma moves along circular path around
trap axis

– Excitation amplitude and extraction pulse
phase determine radial distance and angle

Diocotron amplitude and frequency initially
increase, then stay constant at ≈ 2 V, ≈ 10 kHz
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3)  Positronium production
• Ps formation in nanoporous insulators:

– Implanted positrons scatter off atoms and electrons, slow to eV in few ns
– Positronium forms by capture of bound electrons or free electron from collisions
– Reduced dielectric strength in defects   accumulation of positronium in voids
– If pores are fully interconnected, (almost) all ortho‐Ps diffuses out of the film

• ortho‐Ps yield and velocity distribution depend on
– Converter material
– Implantation depth (energy)
– Target temperature
 up to  30%  at  50 K
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High‐efficiency positronium converter

Ps

Ps

Ps

e+

Ps
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4)  Positronium excitation
• Cross‐section of Ps charge exchange reaction
is enhanced for large n: 

• Two‐step excitation   n = 3   n = 35

• Requirements
– Bandwidth matched to broadened Rydberg levels
– Sufficient power to excite Ps cloud within few ns 
– Beam tailored to geometry of expanding cloud

4
0naσ  λ ≈ 1670 nm

τ ≈ 10 ns

λ ≈ 205 nm
τ ≈ 3 ns

Ps

n = 1

n = 2

n = 3

n = 35

Excitation efficiency ≈ 30%
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5)  Antihydrogen recombination
• Charge exchange reaction:

• Principle demonstrated by ATRAP
Cs*   Ps*   Ħ *
[C. H. Storry et al., Phys. Rev. Lett. 93 (2004) 263401]

• Advantages:
– Large cross‐section:

– Narrow and well‐defined  Ħ n‐state
distribution

  ep HPs

At  T(  ) = 100 mK,  nPs = 35
 v( Ħ ) ≈ 45 m/s

T( Ħ ) ≈ 120 mK

laser
excitation

antiproton
trap

nano-porous
insulator

e+ Ps

Ps*

H beam

H*
accelerating
field

 cold / ultracold Ħ

4
0naσ 

– Antiproton temperature essentially
determines antihydrogen temperature:
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6)  Antihydrogen beam formation
• Electric field gradients exert force on electric
dipole moments of neutral atoms:

 Rydberg atoms are very sensitive to inhomogeneous
electric fields

• Stark deceleration of hydrogen demonstrated (ETH group):
[E. Vliegen & F. Merkt, J. Phys. B 39 (2006) L241]

– n = 22,23,24
– Accelerations of up to  2×108 m/s2 achieved
– Hydrogen beam at  700 m/s  can be stopped 

in  5 µs  over only  1.8 mm

FnneaU )1(
3
2

0 

Fnnea  )1(
3
2

0F

V-

V+

H(max. induced
dipole)
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7)  Gravity measurement
• Forces can be measured with a
series of slits
– Formation of an interference or shadow

pattern with two slits

– Measurement of the vertical deflection
δx with a third (analysis) slit

(antihydrogen beam at 100 mK,
accelerated to 500 m s−1, L ≈ 0.5 m)

– Vertical deflection due to gravity:

– Vertical beam extent:

μm10δ x

cm8.5∆ x

22

• Many slits:  interferometer/deflectometer
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7)  Gravity measurement
• Moiré deflectometer:

– Classical counterpart of Mach‐Zehnder interferometer

– Two gratings create shadow pattern on third grating

– “Self‐focusing” effect

– Successfully used for gravity measurement on Ar atoms,  σ(g)/g = 2×10−4

[M. K. Oberthaler et al., Phys. Rev. A 54 (1996) 3165]

2
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From Zehnder to moiré
• Matter‐wave interferometer:

• Requirement on angular beam divergence:

• Solution: increase grating period

L – distance between gratings
T – TOF between gratings
d – grating period

[L. Zehnder, Z. Instrumentenkunde 11 (1891) 275;
L. Mach, Z. Instrumentenkunde 12 (1892) 89]

 requires T < 1 mKdiffrbeamδ φφ  dλdB (antihydrogen beam
at 500 m s−1, d = 100 nm)

24

d

L L

detectoranalyser

particle
beam

moiré
deflectometer

Talbot‐Lau
interferometer

Mach‐Zehnder
interferometer

Lλd dB Lλd dBLλd dB
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8)  Data analysis
• Detection of vertical annihilation position
as a function of TOF / velocity:

(Monte Carlo simulation)

• Summing up the peaks:

vbeam = 600, 400, 300, 250 m/s

25
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8)  Data analysis
• Extraction of g:

2
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Measurement of  g to 1%:
– ≈ 105 Ħ atoms at 100 mK
– 2 weeks of beam time
– Event rate: 1 Hz

2δ gTx 

[M. K. Oberthaler et al.,
Phys. Rev. A 54 (1996) 3165]

2)( vLg
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AEGIS construction 2010–2012

September 2011 December 2012

27
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Status: Magnets and traps
• 5 T magnet  (capture)  and 1 T magnet
(Ħ reco)  installed and commissioned

• All traps completed & commissioned

– successful    stacking (4 shots,  4×105  )
– storage of cooled    (lifetime τ = 570 s)
– e+ transfer to 1 T trap  (4×105, lifetime τ = 120 s)
– diocotron excitation demonstrated
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Status: Positronium laser
• AEGIS laser system
for Ps excitation completed

1064 nm, 5 ns
650 mJ

2ω

205 nm
2 μJ

1650-1700 nm
200 μJ

Etalon

894 nm

OPA

OPG

Q-switched
Nd:YAG laser

4ω

532 nm

266 nm

sum

OPG + OPA

Ps target

• Laser access to Ps target by
– Prism  (UV laser)

– Fiber  (IR laser)

IR fiber

UV prism

e+ trap
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Status: Moiré deflectometer
• Deflectometer test setup  (U Heidelberg group):

– Stability of gratings measured with 
laser:  30 nm over 1 h

– Prototype deflectometer comis‐
sioned with metastable Ar atoms

 first gravity measurement

5.0..10.6 μm

40 μm

Silicon‐on‐insulator wafer

30

Gratings for alignment
by optical interferometry

Active area 68 cm2

Mu metal
shielding
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Status: Moiré Ħ detector
• Requirement: Detect Ħ annihilations with resolution Δt ≈ 1 μs, Δx ≈ 2 μm

• Currently favored design:

– Time of flight from 1D Si strip

– High spatial resolution provided by emulsion

– 2D SciFi tracker correlates emulsion tracks with timed events

1D Si strip nuclear emulsion 2D SciFi tracker

Ħ from
deflectometer

(distances and thicknesses not to scale)
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Status: Moiré Ħ detector
• Nuclear emulsions:

– 90 μm thick gels on glass substrate  (0.5…1 mm thick)

– Based on technology developed for OPERA, modified
for vacuum operation and tested at low temp

– Off‐line analysis by automatic 3D scanning
microscope (3 days for 20 x 20 cm emulsion)
 tomographic image

32

Intrinsic resolution  58 nm

Vertex resolution  ≈ 1.4…2.3 μm
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Moiré deflectometer test with 
• December 2012:
Deflectometry measurement with 
in “mini moiré” setup
– d = 40 μm,  L = 25 mm

– 110 keV  ,  6.5 h emulsion exposure

– Reference measurement with diode
light in Talbot‐Lau regime

[S. Aghion et al.,
Nature Comm., to appear]
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Moiré deflectometer test with 
• Light and antiprotons detected on emulsion

• Result:
– Deflection (upward):

– Force on   :

– corresponds to magnetic field ≈ 8 G or electric field ≈ 34 V/m

• Absolute shift comparable to that expected for Ħ measurement

• Force 10 orders of magnitude smaller, but sensitivity 11 orders
of magnitude larger (8 for lower v, 3 for longer L)
[S. Aghion et al., Nature Comm., to appear]

10.0 ± 0.9 (stat) ± 6.3 (syst) μm

540 ± 50 (stat) ± 340 (syst) aN
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Outline

Introduction and motivation

AEGIS principle and setup

Current status

Conclusions and outlook
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Conclusions & outlook

• The effect of gravity on antimatter has never been measured

• Depending on the chosen model, effect could be nil or dramatic

• The AEGIS experiment intends to measure  g of antihydrogen to 
(initially)  1% precision

• Construction and commissioning of AEGIS apparatus largely 
completed

• Next milestones:
– second half of 2014: Ħ formation by Ps charge exchange

– 2015: Formation of Ħ beam

– 2016: First antimatter gravity experiment
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