Calcul LSST Architecture de l'infrastructure

R. Ansari - Lyon (CC-IN2P3)

6 Février 2013

1an : ~ 10^8 images-CCD \rightarrow ~ 10^9 files

10 an : ~ 10^9 images-CCD \rightarrow ~ 10^10 files

LSST data set

- * Images: 300 MBytes/s, 15 MBytes/s/raft, 1.5 MBytes/s/ccd
 - * 15 TB/night, 1500 exp/night
 - * 5000 TB / year → 100 × 50 TB; 50 000 TB / full survey → 1000 × 50 TB
 - Need high level of parallelism in storage / processing
- * Catalogs: 100-200 TB for object catalogs, 1000-3000 TB for light curves
- Ancillary / calibration data

DC Summer 2013 (CC-IN2P3)

- * Stripe 82 : ~1.5 10^6 CCD-images, ~ 7 TB "raw data"
- * Comparable to one night of LSST: 4. 10^5 CCD-images, 15 TB (raw data)
- * DC2013: 7 TB input, ~100 TB output/processed data, few 10^7 files
- ~40 000 jobs and ~100 000 h CPU (10^6 HS06) over ~ 2 months , ~100 jobs in parallel (100 cores)
- * I/O rate: few x 100 TB over ~ 1000 hours \rightarrow ~30 MB/s
- * We need to gain more than a factor 100 in efficiency to perform the first year LSST DRP!

Slide by R. Lemrani

Current LSST / DC2013 computing model

Distributed File System server (GPFS)

Ressource allocation and management (GridEngine)

Current LSST / DC2013 computing model

- DC 2013:30 MB/s, 100 cores in |
- LSST 1 year : 5 GB/s , 10 000 cores in |
- LSST 10 years: 50 GB/s, 100 000 cores in |

Ressource allocation and management (GridEngine)

Distributed File System server (GPFS)

LSST computing infrastructure

* Need an efficient, parallel computing and storage system:

- * ~ [100-200 nodes] x [50-100 TB + CPU's] for the first few years
- * ~ 1000 nodes x [50-100 TB + CPU's] for the full survey
- few MB/s / node data rates should allow several processing runs for DE type complex analysis
- Need a powerful map/reduce (or scatter/gather) software tool (or layer) to enable efficient use of the underlying infrastructure

Parallel processing/storage (MPP)

LSST computing infrastructure architecture (1)

- Use of a distributed computing/storage infrastructure
- Data partitioning according to the sky position (with some overlap)
- LSST files are of the type Write Once, Read Many (WORM)
- * A light weight DFS can be used , and the LSST code and tools can transparently access data using C++ classes inheriting from ifstream / ofstream
- * The same ressources can be used for the catalogue database (QServ ...)
- Possibility to deploy such an infrastructure at CC-IN2P3?
- * The question ressources (computing and storage) allocation and management ?

LSST computing infrastructure architecture (2) Possible arrangements:

- * A set of SuperNodes, ~64 (first year) to ~256 (final configuration)
- * Typical SuperNode: SN-A = [FileServer: 96-128 TB] + [64-128 cores]
- SuperNode-Final config: SN-D = [FileServer: 512 TB] + [512 cores]
- * I/O rate will be around ~ 50 100 MB/s per SuperNode

LSST computing infrastructure architecture (3) Possible Deployment plan (& cost)

- * SN-0: $[2 \times (2 \times 8 c + 64-128 GB mem) = 32 cores] + 32-48 TB disk$
- * 2 × SN-0 would be enough for stripe 82 or CFHTLS DC's (2015)
- * SN-1: [64 cores + 72-96 TB], 4 × SN-1 (2017)
- * SN-A: [128 cores + 128 TB], 8 × SN-A (2019)
- Pre-survey: 32 × SN-A (2021) at CC-IN2P3 (50 % DRP)
- * Survey start (1st,2nd year : 48 × SN-A at CC-IN2P3 (2022)
- * Cost: SN-0 → 50 k€?, SN-A → 150 k€???

LSST computing infrastructure architecture Other issues

- * Reduce storage costs: file compression (per image-CCD basis)
- * Avoid long term storage of processed images?
 - On demand creation of processed images (Apply photometric/ astrometric calibration)
- * Reduce computing cost : use of GPU ...