LPNHE Paris

Simulation of Radiation Effects on Semiconductors

Design of Low Gain Avalanche Detectors

Dr. David Flores

Instituto de Microelectrónica de Barcelona (IMB-CNM-CSIC) **Barcelona**, Spain

david.flores@imb-cnm.csic.es

Outline

- Background \checkmark
- **Basic principles** \checkmark
- **Ionization Damage Simulation**
 - Silicon \checkmark
 - ✓ Silicon oxide
- **Displacement Damage Simulation**
 - Semiconductor \checkmark

Case Study: Design of Low Gain Avalanche Photodetectors

- LGAD structure and application \checkmark
- Gain simulation \checkmark
- Design of active region \checkmark
- Design of periphery and edge termination region \checkmark
- **Fabrication and Experimental results** \checkmark

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional de Microelectrónica

Centro Nacional de Microelectrónica

Instituto de Microelectrónica de Barcelona 🎇 CSIC Centro Nacional de Microelectrónica

Centro Nacional de Microelectrónica

Centro Nacional de Microelectrónica

Integrated Micro and Nano **Fabrication Clean Room**

Main CR

- **1,500** m²
- **Class 100-10,000**
- **CMOS integrated circuits**
- **Microsystems processes**
- Nanolithography and nanofabrication

Back-end CR

- **40** m²
- Class 1000-10,000
- Chip packaging
- Hybrid circuit assembly

LPNHE Paris

SILVACO

SYNOPSYS[®]

General Considerations

TCAD Software for (Power) semiconductors

- Silvaco \checkmark
- \checkmark Sentaurus
- SRIM (TRIM Monte Carlo simulation) \checkmark

Previous knowledge:

- Power semiconductor devices: Design, optimisation and fabrication \checkmark
- \checkmark Silvaco tools for process technology simulation and Clean Room control
- ✓ Sentaurus tools for structure optimisation (selection of optimum geometrical and technological parameters)
- Advanced simulation of device degradation (hot carriers, hot spots, etc.) \checkmark
- Performance degradation after irradiation of commercial power lateral \checkmark **MOSFETs**
- Design and application of <u>Silicon tracking detectors</u> (ATLAS) \checkmark

What do we need to simulate / emulate?

- **Radiation hardness of (power) semiconductor devices** \checkmark
 - **Post-irradiation damage**
 - Technological modifications to enhance robustness
- Single Event Effects (logic circuits and memories) \checkmark
 - Generated charge profiles
 - **Transient simulations of complex 3D structures**
- Charge generation and evolution in Silicon detectors \checkmark
 - Transient or quasi-static simulation?
 - **Strategies**
- Gain simulation in Silicon detectors \checkmark

- The interaction between radiation and materials (of a semiconductor device) is based on the moment and energy transfer
 - **Ionisation damage** \checkmark
 - **Displacement damage** \checkmark

Tipo	Energía	Interacción	Secundarios	Daño Primario	Daño Secundario
e-	< 150 keV > 150 keV	cortical	e ⁻	ionización	ionización
		nuclear	iones	desplazamiento	
$\mathbf{p}^+, \alpha,$	> MeV	cortical	e^- , iones	ionización	ionización
Iones		nuclear	iones	desplazamiento	
n	$< 100 \ {\rm keV}$	nuclear	iones		ionización
	térmicos	captura inelástica	α , productos de fision y γ	desplazamiento	y desplazamiento
	< 50 keV	fotoeléctrico	e-		ionización
$\begin{pmatrix} \gamma \end{pmatrix}$	$> 50 { m ~keV}$ $< 20 { m ~MeV}$	MeV Compton		ionización	ionización y
7	> 20 MeV prod. pares		$e^-, e^+ y \gamma$		desplazamiento

Relation between absorbed dose and energy transfer

- Number of incident particles (cm⁻²·s⁻¹) Flux (Φ): \checkmark
- <u>Integrated Flux or Fluence (Φ)</u>: Total number of incident particles (cm⁻²)

 $D = S\Phi$

Dose (D): Absorbed energy per unit mass \checkmark

(Gray: 1 Gy = $100 \text{ J} \cdot \text{Kg}^{-1}$)

 $(rad; 1 rad = 100 erg \cdot s^{-1})$

Stopping Power (S): Energy transfer, normalised to the material density (MeV·cm²·Kg⁻¹) \checkmark

Ionisation Damage Simulation

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional de Microelectrónica

Ionisation Damage Simulation

The incident particle transfer its energy to a cortical electron, creating an electron-hole pair

The minimum energy to create an electron-hole pair (Shockley theory) is:

 $E_{ion} = E_G + rE_R + 2E_f$

 E_{G} (gap), E_{R} (Raman), E_{f} (Fonons)

The <u>generation rate</u> accounts for the electron-hole pairs created by a TID₀ = 1 Rad in 1 cm³

$$g_0 = \rho \frac{\text{TID}_0}{E_{ion}}$$

Material	$E_{ion} [eV]$	$g_0 \ [ehp/cm^3 \cdot rad]$
Si	3.6	$4{,}0\times10^{13}$
${ m SiO}_2$	17.0	$8,1 \times 10^{12}$
GaAs	~ 4.8	$\sim 7{,}0\times 10^{13}$
Ge	2.8	$1,2 \times 10^{14}$

Ionisation Damage Simulation

- □ The damage introduced by the generation of a great amount of electron-hole pairs depends on the <u>transient evolution</u> of the charge and also on the <u>bias</u> and <u>ambient conditions</u>
 - ✓ <u>Semiconductors</u>:
 - If no bias is applied, charge disappears due to recombination. The process is ruled by the carrier lifetimes and does not degrade the material. No simulation interest
 - If bias is applied, mobile charge is accelerated by the electric field in the depletion region and a transient current is observed. Single Event Effects
 - Transient simulation.
 - ✓ <u>Dielectrics</u>:
 - The number of generated electron-hole pairs is much lower than in semiconductors
 - The charge mobility is also much lower than in semiconductors
 - As a consequence, carrier are trapped and a certain density of fixed charge is created. Critical in active devices
 - Quasi stationary simulation

LPNHE Paris

Ionisation Damage in Semiconductors

Ionisation Damage Simulation in Semiconductors

- The simulation of ionising particles is only relevant when the density of generated electronhole pairs is really high (electron-hole plasma)
 - Heavy ions typically create an electron-hole plasma \checkmark
 - Transport equation in a non-linear regime have to be solved \checkmark
 - Strong injection conditions are easily reached \checkmark
 - The Sentaurus Heavy Ion model works properly to emulate the transient evolution of \checkmark the generated charge (Single Event Effects)
 - Simulation of particles with Minimum Ionizing Energy is of great interest since the number of generated electron-hole pairs is perfectly known.
 - Transient simulations are time costly if accuracy is expected.
 - The distribution of the generated electron-hole pairs in the semiconductor has to be previously determined by using a SRIM/TRIM simulator (Stopping and Range of Ions in Matter)

Single Event Effects: Experimental Study and Simulation

Single Event Effects (SEE):

- Produced by high energy particle hits on sensitive circuit regions
- Main topic in reliability and device performance in space applications

Study and prediction of SEE require test in particle accelerator facilities

- Heavy Ion accelerator provide high energy capabilities
- High cost and limited availability impose alternative methodologies \checkmark
- Numerical simulation techniques are able to predict device and circuit behaviour after an ion hit

Single Event Effects: Experimental Study and Simulation

- Simulation Techniques: Different Approaches.
 - Physics of the incident particle and its interaction with matter (SRIM- \checkmark Stopping and Rang of Ions in Matter):
 - Calculations on the energy deposition of ions passing through matter
 - Linear Energy Transfer (LET) profile along the particle track can be obtained
 - Electric performance of the circuit after the perturbation (CADENCE- \checkmark **SPECTRE**):
 - Perturbation is replaced by a pulsed current in the affected node
 - Single Event evolution can be followed
 - Semiconductor solid state physics (Synopsys Sentaurus TCAD): \checkmark
 - Exact reproduction of the charge collection phenomenology
 - Accurate consequences over the electrical characteristics can be evaluated

Ionisation Damage in Oxides

Case Study: Power LDMOS Transistor

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional de Microelectrónica

Two approaches can be contemplated:

- Simulation of the defect evolution 1.
 - Transport, anneal and recombination models
 - Transient simulation (time costly)
 - Continuity equations are not solved in oxides
 - "Oxide as semiconductor" option has to be selected and a correct set of parameters have to be introduced (good knowledge of the dielectric)
- Simulation of the permanent damage using Sentaurus Fixed Charge and Traps models 2.
 - **Quasi-static simulation**
 - Average final values necessary
- A relation between defects and Dose (TID) is needed \checkmark
 - Generation of <u>fixed charge</u> (N_{ot}) and <u>interface traps</u> (N_{it})
 - Energy distribution of traps (D_{it})
 - Strong electric field dependence (irradiation bias conditions to be emulated)

Calculation of the recombination efficiency (f_v)

- Efficiency of the recombination process (f_v) is the ratio between surviving holes and ✓ total generated holes
- Recombination strongly depends on the ionising particle \checkmark

The efficiency of the recombination also depends on the electric field \checkmark

$$f_Y(E_{ox}) = \left(\frac{|E_{ox}|}{|E_{ox}| + E_1}\right)^m$$
 For ⁶⁰Co: m=0.7 and E₁=0.55 MV/cm

Charge generation and evolution in a MOS structure

- Electron-hole pairs suffer an initial recombination (low electric field) \checkmark
- Under high electric field electrons are immediately removed through the gate electrode \checkmark
- Holes are also drift by the high electric field, but their mobility is low and take time to \checkmark reach the Si/SiO₂ interface (hopping transport)
- Some holes are trapped in the deep levels at the region close to the Si/SiO₂ interface \checkmark creating fixed charges and interface traps

Calculation of the trapping efficiency (f_{ot}) and fixed charges (N_{ot})

- Survivor holes (to the eventual initial recombination) travel through the oxide \checkmark
- Holes can be trapped in their way to the oxide interface \checkmark
- The efficiency of the trapping process (f_{ot}) is the ratio between trapped holes and \checkmark surviving holes
 - The trapping efficiency depends on the electric field and on the oxide quality
 - If the oxide thickness is lower than 15 nm, holes are completely removed by tunneling effect (f_{ot}=0)
- **Finally:** \checkmark
 - The fixed charges are described by

Calculation of the Interface traps

- Traps in the Si/SiO₂ interface are related with the H⁺ density in the oxide (depends on \checkmark the growth process) and are identified as P_{h}
 - Incident particles release H⁺ which are drift to the Si/SiO₂ interface where they create dangling bonds (traps)
- **Finally:** \checkmark
 - The <u>interface traps</u> (N_{it}) are described by $N_{it} = a_{it}[p]$

(where a_{it} is the kinetic constant and p is the H⁺ concentration)

N_{it} can also be expressed as a function of the ionising dose (TID) as $N_{it} = a_{it} \mathrm{TID}^{b_{it}}$

> (where b_{it} depends on the process technology and is determined by performing tests on capacitors. Typically $b_{it} \sim 1$)

 \checkmark Only two energy levels are considered: E_v+0.3 eV (acceptor) and E_v+0.8 eV (donor)

Ionisation Damage Simulation Procedure in Oxides

Fixed charge (N_{ot}) is introduced in Sentaurus by setting the charge parameter

Traps in the Si/SiO₂ interface are set by:

- The two energy levels (E_v +0.3 eV and E_v +0.8 eV)
- The superficial trap concentration (N_{it})
- Capture cross-section of electrons and holes

LDMOS transistors will be used in DC-DC converters for the HL-LHC upgrade

- Transistors from IHP Microelectronics (DE) (0.25 µm SGB25V GOD SiGe BiCMOS) \checkmark
- Submitted to neutron irradiation (0.5, 5 and 10 Mrad) \checkmark
- **<u>First step</u>**: Technological and electrical simulation of basic cell and fitting with experimental data
- Second step: Electric field distribution (oxides and semiconductors)

Third step: Definition of oxide blocks for fixed charge and interface traps

NLDMOS

PLDMOS

- <u>Fourth step</u>: Calculation of recombination efficiency $f_v(E_{ox})$ and fixed charges N_{ot} (f_{ot} has to be tuned with available irradiation data)
 - N_{ot} values are introduced in Sentaurus as fixed charges in each oxide block \checkmark
- <u>Fifth step</u>: Calculation of interface traps N_{it} according to: $N_{it} = a_{it} \text{TID}^{\prime}$ (a_{it} has to be tuned with available irradiation data)

Parámetro	NLDMOS	PLDMOS
f_{ot} [1] (gate oxide)	0.01	0.01
f_{ot} [1] (drift oxide)	0.2	0.2
$a_{it} \; [\mathrm{cm}^{-2} \mathrm{rad}^{-1}]$	$1,7 imes 10^4$	$2,5 imes10^4$

fot and ait values according to available irradiation data

Accurate fitting between simulated and measured I_{DS} versus V_{DS} curves

Displacement Damage

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional de Microelectrónica

Displacement Damage Simulation

- **Minority carrier lifetime reduction** \checkmark
- Reduction of carriers (n or p) \checkmark
- **Mobility degradation** ✓

Displacement Damage Simulation Procedure

Sentaurus includes a model for Semiconductor Traps

Typical traps in Float Zone substrates for Silicon detectors are perfectly determined

Type	$\mathrm{E}(\mathrm{eV})$	Trap	$\sigma_e({ m cm}^{-2})$	$\sigma_h({ m cm}^{-2})$	$\eta({ m cm}^{-1})$	
Aceptor	E_C -0.42	VV	9.5×10^{-15}	9.5×10^{-14}	1.613	University of Peruggia model,
Aceptor	E_{C} -0.46	VVV	5.0×10^{-15}	5.0×10^{-14}	0.9	including Pennicard
Donador	$E_V + 0.36$	CiOi	$3.23{ imes}10^{-13}$	$3.23{ imes}10^{-14}$	0.9	contections

 \checkmark The total <u>trap concentration</u> (N_t) is the added contribution of filled (n_t) and empty (p_t)

$$N_t = n_t + p_t \qquad \qquad N_t = \eta \cdot \Phi$$

(where η is the introduction rate, determined by DLTS measures)

The <u>effective doping concentration</u> in the P-type substrate is finally given by:

$$N_{eff} = N_D - N_A + \sum_{donadores} p_t - \sum_{aceptores} n_t$$

Displacement Damage in MOS Capacitors

- Simulation of displacement damage in MOS capacitors under 24 GeV proton irradiation conditions
 - \checkmark The introduction rate (η) is calculated for the equivalent 1 MeV neutrons. Hence, the fluence has to be corrected according to the 24 GeV protons

LPNHE Paris

Case Study: Design of Low Gain Avalanche **Photodetectors**

Instituto de Microelectrónica de Barcelona 💥 CSIC Centro Nacional de Microelectrónica

Silicon Detectors with Internal Gain and Proportional Response

Tracking Detectors

PiN Diodes

- **Proportional response** \checkmark
- **Good efficiency** \checkmark
- Good spectral range \checkmark
- Segmentation is technologically available \checkmark (strip and pixel detectors).

After Irradiation

- X Worse signal to noise ratio (lower quality signal + noise increment)
- X Increment of the power consumption (leakage current increase)
- X Ionisation damage (relevant on n-on-p structures)

Low Gain Avalanche Detectors (LGAD)

- Proportional response (linear mode operation)
 - **Good efficiency**
 - Good spectral range
- **Better sensibility (Gain)**
- Thin detector integration with the same signal and higher collection efficiency
- Better signal/noise ratio

After Irradiation

- Similar pre & post irradiation signal \checkmark (higher quality signal + lower noise increase)
- Power consumption slightly increased \checkmark
- x Ionisation damage in oxides (relevant on n-on-p structures)

Linear Mode Operation. Gain Definition

Diodes with multiplication can operate in Linear or Geiger mode

- Linear mode: Moderate gain: Proportional response to the deposited energy ✓
- **<u>Geiger mode</u>**: Very high gain: Digital response (detection or not detection)

[1] A.G. Stewart et al. in Proc. of SPIE, Vol. 6119, 2006

PiN Diode (No Gain)

Abrupt N⁺P junction with trapezoidal electric field profile (linearly decreasing in the P substrate)

- Electrons are accelerated towards the N⁺ region until they reach the saturation velocity \checkmark
- Since the electric field is much lower than E_{crit}, electrons can not generate new carriers \checkmark (no impact ionisation and no gain)

Pad Diode with internal Gain

Gaussian N+P junction where the P-multiplication layer becomes completely depleted at a very low reverse voltage

- ✓ Electrons are accelerated towards the N⁺ region until they reach the saturation velocity
- \checkmark The electric field in the P layer is close to the E_{crit} , value (impact ionisation and gain)

Conditions for Gain

Impact ionisation requires a minimum electric field of 1e5 V/cm in the P layer

- Full depletion of the P-type substrate is needed to avoid recombination \checkmark
- The E_{crit} value (~3e5 V/cm) can not be reached in the N+P junction (reverse breakdown) \checkmark

Gain Definition and Usage

The Gain can be defined in two equivalent ways and is identical whatever the incident particle is

- A known radiation source has to be used to calibrate the gain \checkmark
 - Collected charge is determined by integrating the current waveform
 - The total number of generated electron-hole pairs in Silicon is determined by the type of radiation source
- Once the Gain is calibrated, the detector can be used to identify the incident radiation by simply measuring the collected charge

Gain Simulation

- Gain simulation considering generated and collected charge
 - An initial charge distribution has to be introduced in the Sentaurus Heavy Ion model \checkmark
 - The evolution of the generated charge is calculated by transient simulations \checkmark
 - We have not been able to observe any transient current increase X
 - Impact ionisation is an statistic concept while transient simulation considers the evolution of each single electron...

Gain simulation considering multiplied and non-multiplied current (alternative method)

- Ionisation coefficients are modified in a very small volume of the P-type substrate (3 \checkmark orders of magnitude greater) to create a know number of electron-hole pairs (3000)
- Quasi static simulations are performed with and without the generated charge \checkmark
 - The PiN diode is simulated to determine current increase due to the generated charge (no impact ionisation is present)
 - Then, the LGAD counterpart is simulated with and without charge (impact ionisation is present)
 - Finally, the simulated Gain corresponds to the ratio between PiN and LGAD currents when charge is generated

$$M(V) = \frac{I_{APD}|_{Charge}(V) - I_{APD}|_{NoCharge}(V)}{I_{PiN}|_{Charge}(V) - I_{PiN}|_{NoCharge}(V)}$$

Gain Simulation

Gain Simulation

- Local charge generation equivalent to the absorption of a 30 KeV X-ray \checkmark
- The doping of the sample B P-multiplication layer is higher than the A sample (high Gain) \checkmark

CSIC

Design of the P-Multiplication Region

Design of the Edge Termination

The optimisation of the edge termination is ruled by the electric field at the multiplication layer (not by the maximum voltage capability, as in the case of power devices)

Edge Termination: Why is needed?

- The N⁺ shallow contact and the P-multiplication layers have to be locally created with a lithography mask
 - The electric field at the curvature of the N^+/P junction is much higher than that of the \checkmark plane junction (where Gain is needed)
 - Avalanche at the N^+/P curvature at a very low reverse voltage (premature breakdown)

Compatible Edge Termination Techniques

Edge Termination with Guard Ring

The N⁺ shallow diffusion is used to implement a floating guard ring

- ✓ The lateral electric field distribution is smoothed leading to two peaks (main junction and floating guard ring)
- ✓ The electric field peak and the risk of avalanche breakdown at the curvature of the main junction is reduced. Optimisation of the guard ring location is needed

Edge Termination with N⁺ Extension

The N⁺ shallow diffusion is used to extend the N⁺ beyond the edge of the multiplication layer

- Phosphorous diffuses more in the very low doped substrate (higher curvature radius and \checkmark voltage capability)
- The electric field rapidly increases at the plain junction (multiplication) \checkmark
- At high reverse voltage the electric peak at the extended N⁺ diffusion leads to avalanche \checkmark breakdown **Avalanche**

Edge Termination with Junction Termination Extension

Junction Termination Extension (JTE) with an additional deep N diffusion

- Additional photolithographic step with high energy Phosphorous implantation
- A field plate can also be implemented for additional electric field smoothing

Edge Termination with Junction Termination Extension

- ✓ Deep N diffusion with high curvature radius (long anneal process)
- Reduced electric field peak at the JTE diffusion
- ✓ Highest electric field at the plane junction (gain control) $V_{BD plane} < V_{BD JTE}$ (Gain control)

Edge Termination with Junction Termination Extension

Design of the Device Periphery

- Full depletion below 100 V reverse bias \checkmark
- Fast lateral depletion of the low doped substrate (A deep P⁺ diffusion –P stop- is needed in \checkmark the die periphery to avoid the depletion region reaching the unprotected edge

What about the Inherent Positive Oxide Charges?

- ✓ Field oxides grown in wet conditions (H_2+O_2) typically have a positive charge density in the range of 5e10 cm⁻²
- x Surface inversion and modification of the depletion region, reaching the deep P-Stop peripheral diffusion

How to Protect the Surface, Limiting the Current Leakage?

- Oxide positive charges create a surface inversion layer (electron path towards the cathode electrode, masking the charge collection when used as a detector)
 - A shallow P-type diffusion (P-Spray) can be used to compensate the surface inversion \checkmark
 - A deep P⁺ diffusion can be placed close to the JTE to eliminate the electron surface current \checkmark

How to Protect the Surface, Limiting the Current Leakage?

An additional N-type ring is implemented by using the deep JTE diffusion

- The N ring has to be placed close to the JTE to avoid a premature breakdown at the JTE \checkmark
- The P-spray diffusion has to be efficient (to avoid short circuit through the inversion layer) \checkmark
- The voltage capability is not degraded since the junction to be protected is now the right \checkmark edge of the added ring (identical than the JTE)

Simulation of the Irradiated Devices

- **PiN**: electric field strength at the junction ٠ increases after irradiation
- **LGAD**: electric field strength at the junction is almost equal after irradiation

Irradiation Trap Model (Perugia Model)

- Acceptor; $E = E_c + 0.46 \text{ eV}; \eta = 0.9$ Acceptor; $E = E_c + 0.42 \text{ eV}$; $\eta = 1.613$ Acceptor; $E = E_c + 0.10 \text{ eV}; \eta = 100$ E= E_v - 0.36 eV; η=0.9 Donor;
- $\sigma_{o} = 5 \times 10^{-15}$ $\sigma_{\rm h} = 5 \times 10^{-14}$ $\sigma_{o} = 2 \times 10^{-15}$ $\sigma_{\rm h} = 2 \times 10^{-14}$ $\sigma_{o} = 2 \times 10^{-15}$ $\sigma_{\rm h}$ = 2.5 x 10⁻¹⁵ $\sigma_{\rm p} = 2.5 \times 10^{-14}$ $\sigma_{\rm h} = 2.5 \times 10^{-15}$

Impact Ionization Model (Univ. of Bolonia)

Experimental Results

Static Performance

- \rightarrow Current levels below 1 µA thorough the whole voltage range
- \rightarrow Junction breakdown above 1100 V

Experimental Results

Multiplication factor has been tested with tri-alpha (²³⁹Pu/²⁴¹Am/²⁴⁴Cm) source.

 \checkmark Irradiation through the anode (back side, 1 µm Aluminum):

Instituto de Microelectrónica de Barcelona 💥 CSIC

