

Sentaurus TCAD Introduction

Franck Nallet Paris - 15/09/2014

CONFIDENTIAL INFORMATION

The following material is being disclosed to you pursuant to a non-disclosure agreement between you or your employer and Synopsys. Information disclosed in this presentation may be used only as permitted under such an agreement.

LEGAL NOTICE

Information contained in this presentation reflects Synopsys plans as of the date of this presentation. Such plans are subject to completion and are subject to change. Products may be offered and purchased only pursuant to an authorized quote and purchase order. Synopsys is not obligated to develop the software with the features and functionality discussed in the materials.

TCAD Application Segments

TCAD Product Portfolio

S[®] Accelerating Innovation

SALIGh2

TCAD Development Focuses

- New Technology Support
 - More Moore
 - FinFET, FDSOI, III-V, etc.
 - More than Moore
 - Analog/RF, CIS, solar, power (Si, SiC, GaN), TSV, etc.
- 3D Support (FinFET, NVM, Power, SRAM, CIS)
 - Improved meshing and geometric operations
 - Stress modeling
 - BEOL reliability modeling
 - Topography simulation
- Performance and Usability
 - Improved multi-CPU scaling
 - Process simulation speed-up
 - More intuitive user interface

TCAD Supported Platforms

Platforms supported in I-2013.12 release:

- x86_64¹ Red Hat Enterprise Linux 5.7, 5.9, 6.2, 6.4
- x86_64¹ SUSE Linux Enterprise Server 10SP3, 10SP4², 11SP1², 11SP2²
- IBM RS6000 64-bit AIX³ 6.1-TL6-SP5

1. The 64-bit (x86_64) Linux software is binary compatible with the Intel orAMDx86_64 processors running Red Hat Enterprise Linux.

2. Binary-compatible hardware platform or operating system. Note, however, that binary compatibility is not guaranteed.

3. Sentaurus Device Electromagnetic Wave Solver, Sentaurus Interconnect, Sentaurus Topography, and

SYLIUF

Sentaurus Topography 3D are not available on AIX.

Sentaurus Workbench – TCAD Simulation Platform

Sentaurus Workbench GUI

Accelerating

SYNOPSYS[®] Acceleration

Sentaurus Workbench – Easy Material & Manual Access

Sentaurus Workbench – Node Explorer

• Node Explorer (F7) provides quick access to all node data

✓ /remote/ch10h5/p Project Edit Scr	Node 359 Explorer Node: 359 Host: pilatus9.internal.synopsys.com Started On: 17:00:59 Mar 06 2013 Job ID: sge: 3052256	Defined Parameters	TAT : 0 // a1 : 2.6e-4 RV : -1 // barlow : 0 // mt : 0.5		
B Application Application Galabkit CIS D Oegradatio GENESISe D GENESISe D GAlasers GAlasers GAlasers	Status: done Tool Name: IV DB Tool Name: sdevice Parameter: TAT : 0 Project Name: /remote/ch10h5/pavelt/SNPS/examples/tmp/BarTun Incut one Output Elloc	Extracted Data		a1 TAT n389]: 2.6e-4 [n319]: 0	mouse
Optics Optimizer Optimizer	All Node Files	/remote/ch10h5/pavelt/SNP Computing step from t=0.90346 to t Computing Coupled(1 poisson-equat	S/examples/tmp/BarTun_lowering/n359_des.out =1 (Stepsize: 0.0965397) : .ion(s) , 1 electron-equation(s) ,	n390]: 2.6e-4 [n328]: 0 n391]: 2.6e-4 [n329]: 0 n392]: 2.6e-4 [n330]: 0	
	Simulator Output Files	1 hole-equation using Bank/Rose nonlinear solver. Iteration Rhs factor	[n394]: 3e-4 [n332]: 0 n395]: 2.6e-4 [n333]: 0 n396]: 2.6e-4 [n334]: 0	on node	
	Standard Output Standard Error	0 2.58e+01 1 9.60e+05 1.00e+00 1 2 1.02e-01 1.00e+00 2 3 1.43e-06 1.00e+00 2 4 1.43e-06 1.00e+00 2	0.37 07e+01 1.07e+06 0 1 0.71 62e+00 5.04e+03 0 1 1.04 31e+00 2.30e+02 0 1 1.42	n397]: 2.6e-4 [n335]: 0 n385]: 2.6e-4 [n341]: 0 n398]: 2.6e-4 [n347]: 0	
	Job Log Info Job Log File Prologue Simulation Epilogue	4 7.828-08 1.008+00 5 5 9.938-09 1.008+00 4 Finished, because Error smaller than 1 (2.1984E-01 Accumulated times: Rha time: 2.05 a	.899+00 5.039+00 0 1 1.75 .639-03 2.20e-01 0 1 2.09).	n400]: 2.6e-4 [n353]: 0 n400]: 2.6e-4 [n365]: 0 n402]: 2.6e-4 [n371]: 0 n403]: 2.6e-4 [n377]: 0	
	n359_des.err	Jacobian time: 0.03 s Solve time: 0.01 s Total time: 2.09 s contact voltage electr ohm 0.000E+00 8.13 sch -2.000E+01 -8.13	n current hole current conduction current 102-16 -1.174E-56 8.130E-16 19E-16 -4.232E-21 -8.130E-16	n404]:2.6e-4 [n383]:0 n415]:2.6e-4 [n416]:0 [n417]:1 n386]:2.6e-4 [n320]:0 [n387]:2.6e-4 [n321]:0 [n418]:1 ppph.9.9.4 [n321]:0	
	n359_des.tdr n359_sge.err pp359_des.cmd pp359_des.par	Finished, because of Curve trace finished. Writing plot 'n359_des.tdr' (TDR f Wed Mar 6 17:00:59 2013: checked Wed Mar 6 17:00:59 2013: checked Wed Mar 6 17:00:59 2013: checked Wed Mar 6 17:00:59 2013: checked	ormat) done. in 1 sdevicemonosemicond license(s) in 1 Dessis-Mono-Semicond license(s) in 1 sdevice license(s) in 1 Dessis license(s)	n405]:2.6e-4 [n322]:0 n405]:2.6e-4 [n338]:0 n406]:2.6e-4 [n338]:0 n407]:2.6e-4 [n342]:0 n408]:2.6e-4 [n340]:0	
	/remote/ch10h5/pavelt/SNPS/examples/tmp/BarTur Pattern Apply Viewer svisual Launch	Sentaurus Device process size: 387 Sentaurus Device simulation times vallclock: 44.22 s total cpu: 42.52 s Sentaurus Device simulation finish	'megabytes med (Date: Wed Mar 6 17:00:59 2013 (CEST)). Good Bye !		
Edit mode	Track the Problem	Search	1.4	rted virtual pruned orphan folded	_

2ALIOL2A2

Sentaurus Workbench – Flexible Execution Controls

remote/ch10h5/pavelt/SNP2 Project Edit Scheduler S Projects Projects Dr_ /remote/ch10h5/pavelt/ D 3D D Applications	S/cxamples/tmp/BarTun_lowering (R /iew Scenario Iool Parameter X Ba Ka Scenario a SNPS/examples	esearch Configuration) – SWI Experiments Nodes Var Project Scheduler	3 © pavelt-m65-inx-sync ables PCM Studio ↓ → → ↓ ■ ↓ ■	opsys.com vH-2 13.0 Estensions ∐elp v	* & () () () ()	 ■ # ■ # 	v III 💿 🖻 1	1 🕑			x
CIS CIS Degradation		SDE Sde				SDEVICE					
Lasers		conc	BC	Vbias	barheight	mt	barlow	RV [n87]: -1	a1 [n384]: 2.6e-4	TAT	
Definition	💙 Run Project /rem	ote/ch10h5/pavel	t/SNPS/exam	ples/tmp/ 🗙	V Delaye	d Project Rur			★ 4	[n328]: 0	selected
PMI - PMI - PubEx - Raphael	Nodes	Project will start at (local time):					[n330]: 0 [n331]: 0	nodes run			
B-C SDE					Date (dd/	mm/yyyy):	03/3	20/2013	4	[n332]: 0 [n333]: 0	with one
Sinterconnect	Queue	sge:INTEL_160	spu	_	Time (hh:	mm:ss AMIPN	1): 12:	11:04 PM		[n334]: 0 [n335]: 0	with one
EP- SProcess_SLitho_SP EP- TCAD-Saber_Choi E- Tecplot macros	How would you	24 [n341]: 0 24 [n347]: 0					[n341]: 0 [n347]: 0	mouse click			
	🔶 Just run, d	lo not preprocess							:4 :4	[n353]: 0 [n359]: 0	
TFET-2D_si_sige	Preproces	s, then run (rewri	tes node inpu	t files)				ancei	:-4 :-4	[n365]: 0 [n371]: 0	
					[n379]: 2.4	[n380] 0.5	[n381]: 0	[n3/0]. 1 [n382]: -1	[n404]: 2.6e-4	[n377]: 0 [n383]: 0	
	Delayed Execu	ition			[n411]: 1.03	[n417]: 0.5	[n413]: 0	[n414]: -1	[n415]: 2.6e-4	[n416]: 0 [n417]: 1	
					[n243]: 1.03	[n2 4]: 0.5	[n245]: 0	[n246]: -1	[n386]: 2.6e-4	[n320]: 0	
					[n29]: 1.03	[h63]: 0.5	[n72]: 0	[n88]: -1	[n387]: 2.6e-4	[n418]: 1	
		<u>R</u> un <u>C</u>	ancel		[136]. 1.03 [130]. 1.03	[n64]: 0.5	[n78]: 0	[n99]: -1	[n405]: 2.6e-4	[n338]: 0	
	i				[n57]: 1.03 [n307]: 0.	[n/0]: 0.5 [n308]: 0.5	[n79]: 0 [n309]: 0	[n100]: -1 [n310]: -1	[n406]: 2.6e-4 [n407]: 2.6e-4	[n339]: 0 [n342]: 0	
			[nzor]. crimic	[II202]20	[n283]: 1.03	[n284]: 0.5	[n285]: 0	[n286]: -1	[n408]: 2.6e-4	[n340]: 0	
								1			Z
- Edit mode	17					none queues	ready nending au	nning done feiler	aborted virtual are	uned ornhan fol	dad
L'un moue						none queuec	heady bending he	ming laone halled	asoned winded pro	mea lathuan lian	

Sentaurus Process Simulator

- General purpose multidimensional (2D/3D) process simulator
- Integrated 3D geometric modeling engine (depo/etch/pattern)
- Adaptive meshing (to geometry/species changes)
- API for user-defined models
- Advanced physical models:
 - Analytic and Monte Carlo implantation
 - Diffusion: laser/flash annealing, kinetic Monte Carlo
 - Mechanical stress
 - Oxidation/Silicidation

FinFET SRAM

Mechanical Stress

Adaptive Meshing

Oxidation

Implantation

implant Arsenic dose=1e14 energy=50 tilt=7 rotation=0 info=2

- MC Implantation
 - Sentaurus MC
 - (Crystal-TRIM)
- Analytic Implantation
 - Primary Distributions
 - o Gaussian
 - Pearson (4 parameters)
 - Dual Pearson (9 parameters)
 - Screening
 - Damage Model
 - Amorphization
 - Molecular Implant
 - Calibrated Implantation Tables

- Arsenic: 0.5~400keV
- 1.5~600keV Antimony:
- 0.5~400keV BF2: 0.2~517keV(silicon)
- Boron:
- Germanium: 1~50keV
- 1~400keV Indium:
- Phosphorus: 0.3~400keV
- Tilt: 0~60
- Oxide: 0~100nm

© Synopsys 2013 12

Dopant Diffusion

- Flash/Laser Anneal
- Dopant Activation and Clustering
- Solid Phase Epitaxial Regrowth
- Epitaxy
- Clustering of Defects
- Pressure-dependent Defect
 Diffusion
- Segregation & Dose Loss
- Kinetic MC Diffusion
- Diffusion Model Hierarchy
 - Constant (constant diffusion coefficient)
 - Fermi (point defects equation not solved, defects in equilibrium)
 - Charged Fermi (same as Fermi+total dopant flux is due to dopant-defect pairs)
 - Pair (dopant-defects pairs are in local equilibrium with dopant and defect concentrations)
 - Charged Pair (same as Pair+reaction rates are state charge dependent)
 - React (incl.defects, rates are not charge state dependent)
 - Charged React (same as React+mobile charged dopant-defects)

Oxidation/Silicidation

- Oxidation Model Hierarhy
 - Deal/Grove Model
 - Massoud Model
 - Mixed Flows (Hirabayashi approach) -
- Stress-Dependent Oxidation (SDO)
- Orientation-Dependent Oxidation
- Doping-Dependent Oxidation
- Trap-Dependent Oxidation
- In Situ Steam-Generated Oxidation (ISSG)
- Silicidation
- Oxynitridation (N₂0)
- Moving Boundaries and Adaptive Mesh
- 3D Oxidation

$$dt \quad A + 2x$$

$$\frac{dx}{dt} = \frac{B}{A + 2x} + C \exp\left(-\frac{x}{L}\right)$$

$$\frac{dx}{dt} = \frac{dx_{H20}}{dt} + \frac{dx_{02}}{dt}$$

$$-\frac{B_{H20}}{dt} + \frac{B_{02}}{dt}$$

B

dx

 $A_{H2O} + 2x + A_{O2} + 2x$

Mechanical Stress Modeling

- Stress Model
 - Viscoplasticity
 - Plasticity
 - Viscoelasticity

- Stress Causing Mechanisms
 - Stress Induced by Growth of Material
 - Stress Induced by Densification
 - Stress Induced by Thermal Mismatch
 - Lattice Mismatch Stress
 - Intrinsic Stress

Etching/Deposition

- Etch Models
 - Isotropic
 - Anisotropic & Directional
 - Polygonal
 - CMP
 - Fourier
 - Crystallographic
 - Trapezoidal
- Depo Models
 - Isotropic
 - Fill & Polygon
 - Fourier
 - Selective Deposition
- Algorithms
 - Analytic
 - Level-set

- 3D Geometry Generation
 - MGOALS3D (level-set)
 - Integrated SDE
 - S-Topo 3D
 - Meshing with Sentaurus Mesh

Non-Si Materials Process Simulation

- MC Implantation
 - SiGe and Ge
 - 4H-, 6H-SiC
 - III-V, including III-N
- **Diffusion & Activation** •
 - First prototype available in H-2013.03 release for 4H-SiC and III-V (InGaAs/InP)

Accelerating

SYNOPSYS[®] Acceleration

© Synopsys 2013 17

Sentaurus Process Kinetic MC

• Command to switch

SetAtomistic

- Considers only defects and impurities, and ignores the lattice for diffusion simulation
- Supported options: *diffuse, deposit, etch, implant, init, line, photo, profile, region, select, strip*
- LKMC: Fully Atomistic Modeling of SPER (Solid Phase Epitaxial Regrowth)
 - SPER velocity depends on the substrate orientation with approximate ratios of 20:10:1 for orientations (100), (110), and (111)

(111) planes

Oxide

Sentaurus Topography 3D

General overview

- Sentaurus Topography 3D is a three-dimensional simulator for evaluating and optimizing critical topography-processing steps such as etching and deposition
- Simulates deposition and etching processes by using the level-set method to evaluate the surface evolution during the process
- Models categories:
 - Built-in models
 - User-defined models within Rate Formula Module (RFM)
 - User-defined models within a Physical Model Interface (PMI)
- Support of different reaction species, different fluxes, re-deposition, ...

SYIIU

Accelerating Innovation

Sentaurus Topography Simulator

- Multidimensional (2D/3D)
- Robust level-set numerical models
- Deposition models (LPCVD, PECVD, HDP-CVD, APCVD, SOG, reflow)
- Etching models (wet, HDP, RIE, ion milling, CMP)
- Interface to Sentaurus Process & Sentaurus Lithography

Etching and Deposition Example

DRAM Flow, using built-in models

Coupling Topography to Process

Sentaurus Interconnect

Sentaurus Interconnect Tool Overview

Focus on BEOL device structures

Sentaurus Interconnect Simulation Flow

BEOL Structure Meshing

Self Heating and Temperature Gradients

300K

Innovation

 Self-heating simulation allows 3D-IC engineers to estimate impact on transistor performance and validate chip-level models for thermal-aware placement

© Synopsys 2013 27

Sentaurus Structure Editor

- Geometrical operations
- Easy to use GUI
- Scripting language
- Advanced geometrical modeling with analytic doping definitions
- Direct interface to meshing engines

S-RCAD DRAM

CIS pixels with microlenses

TSV Structure

ACIS Geometry Kernel

- Based on boundary representation.
- An ACIS boundary representation is a hierarchical decomposition of the topology of the model into lower-level topological objects.
- A typical body contains faces, edges, vertices, and may also includes lumps, shells, loops, and wires.

Tessellation controls

S[®] Accelerating In<u>novation</u>

Scheme Language

- Strings
- Lists
- Arithmetic Expressions
- Boolean Operations
- Loops
- Logical Operations
- Procedures
- System Calls

- (sde:clear)
 - It is helpful to reset SDE
- (define "var_name" "Value")
- (define VAR 0)
 - a constant
- (define VAR (+ 1 4))
 - an operation
- (define VAR (list 1 2 3 'a 'b "f g"))
 - a list

2D -> 3D Structure Construction

Layout Based Device Design

Loaded Layout

STI formation (oxide filling) and Polysilicon / gate oxide generation

Resist for STI

Metal generation for contacts

Silicon etching

Final boundary structure

Process Emulation Mode

- Translates processing steps into geometric operations
- Works only in 3D
- Commands not accessible from GUI
- Support for:
 - Iso- & Aniso- Depo/Etch
 - Placement of analytical profiles w.r.t mask
 - GDS2 file loading
 - Masks definition and Patterning

Process Emulation - 3D CIS Structure

- A Sentaurus Structure Editor (SDE) script was done to generate "boundary" and "doping" files for Sentaurus Mesh (S-Mesh)
- GDS2 file is loaded into SDE and layers are built out of GDS2 layers

(define GDSFILE "TCAD_PIXEL_v3.gds") (define CELLNAME "TCAD_PIXEL_v3") (define LAYERNAMES (list 'PWELL 'POLY 'ACT 'NO_PW 'NPLUS 'CONT 'PW_LVT 'MET1 'VIA1 'MET2 'VIA2 'MET3 'VIA3 'MET4 'ULENS 'PD1 'PD2 'SN1 'SN2 'SN3)) (define LAYERNUMBERS (list '1:0 '8:0 '9:0 '17:82 '32:0 '34:0 '35:0 '40:0 '41:0 '42:0 '43:0 '44:0 '49:0 '50:0 '89:0 '92:82 '93:0 '94:0 '94:43 '94:95))

(sdeicwb:gds2mac "gds.file" GDSFILE "cell" CELLNAME
"layer.names" LAYERNAMES "layer.numbers" LAYERNUMBERS
"sim3d" (list 0 -6000 6000 0) "scale" 1.0e-3 "domain.name"
"SIM3D" "mac.file" "TCAD PIXEL")

SYLIUF

S[®] Accelerating In<u>novation</u>

Process Emulation - 3D CIS Structure

- Geometry is built step by step using deposition/etch/patterning features of SDE
- Scripting language (scheme) allows full customization, using variables, lists, strings and built-in ACIS functions.

```
(define TSUB 7.0)
(sdepe:add-substrate "material" "Silicon" "thickness" TSUB "region" "substrat")
(sdepe:pattern "mask" "ACT" "polarity" "light" "material" "Resist" "thickness" 1 "type"
"aniso" "algorithm" "sweep" )
(sdepe:etch-material "material" "Silicon" "depth" 0.420 "taper-angle" 5)
(entity:delete (find-material-id "Resist"))
(sdepe:fill-device "material" "Oxide" "height" (+ TSUB 0.008))
(sdepe:pattern "mask" "POLY" "polarity" "light" "material" "PolySilicon" "thickness" 0.3
"type" "aniso" "algorithm" "sweep" )
```

Process Emulation - 3D CIS Structure

- SDE is based on ACIS (product from Spatial, Dassault-System) and allows complex solid modeling
- Micro-lens is part of a sphere inserted on top of the CIS

Process Emulation - 3D CIS Structure + doping

- Doping from analytical or SIMS profiles
- Doping from 1D/2D or 3D process simulation
- Meshing with Sentaurus Mesh

Advanced Tool Operations

2D geometry sweep with SDE / 2D doping sweep with SnMesh

SYNOPSYS[®] Accelerating Innovation

SnMesh - Quadtree/Octree Spatial Decomposition

- (A) Quadtree algorithm
 - mesh step

(C)

(D)

1.5

[mn

N

1.5 × 1 [UM]

- proportional to device size
- (B) Quadtree algorithm
 - mesh step not proportional to device size
- (C) Quadtree algorithm
 - non axis-aligned
 boundary
- (D) Octree algorithm mesh step proportional to device size

SYNOPSYS[®] Accelerating Innovation

Unified (octree/quadtree + normal offsetting) Meshing Algorithm

Accelerating

SYNOP

Doping Deatomization

Particle "BoronParticles" { ParticleFile = "kmc_final.tdr" Species = "BoronActiveConcentration" ScreeningFactor = 3.5e6 AutoScreeningFactor Normalization

Sentaurus Device Simulator

- General purpose multidimensional (2D/3D) device simulator
- Silicon, SiGe, Ge, SiC, III-V compounds (including III-N materials)
- Drift-diffusion, Hydrodynamic, Thermodynamic, and Monte Carlo transport
- Wide range of advanced physical models
 - Stress-dependent mobility enhancement
 - Quantization and random doping effects
 - Circuit mixed-mode, small-signal AC, Harmonic Balance
 - Variability Analysis

STI Narrow Width Effect

FinFET

NAND Flash

Sentaurus Device for CMOS

- Carrier quantization in the channel
- Hydrodynamic transport
- Noise analysis
- High-k dielectrics
- Mechanical stress and strain effects
- Stochastic geometry and doping variability
- Remote Coulomb scattering
- Advanced surface mobility modeling
- Non-local band-to-band and impact ionization
- Gate leakage
- Energy dependent energy relaxation time

SYLIUF

S[®] Accelerating Innovation

- Degradation kinetics
- IFM based variability analysis

Sentaurus Device for Memory

- Carrier quantization in the channel
- Spherical Harmonic Expansion
- Non-local tunneling
- Hot Carrier Injection
- 3D capacitive effects
- Multi State Configuration including the state dependent physical models and parameters
- Cycling analysis
- Mixed-mode simulations
- Advanced surface mobility modeling
- Non-local band-to-band, TAT, and impact ionization
- Interface trap degradation

Sentaurus Device for Power

- Thermodynamic carrier transport
- 3D geometry effects
- Mixed-mode simulations including the circuit protective elements, represented by compact models
- Heat dependent kinetic model parameters
- Non-local gate tunneling
- Trapping dynamic
- Composition dependent model parameters
- Heterointerface carrier transport
- Carrier thermionic emission
- Carrier quantization in the channel
- Piezo and spontaneous polarization

S[®] Accelerating In<u>novation</u>

SALIGh2

- Doping Incomplete Ionization
- Material anisotropy

Sentaurus Device for RF

- Hydrodynamic transport
- Small-signal AC analysis
- Harmonic balance analysis
- Carrier quantization
- Bulk and interface traps
- Mechanical stress and strain effects
- Energy dependent energy relaxation time
- Anisotropy effects
- Composition dependent model parameters
- Non-local barrier tunneling
- Stress dependent models
- Polarization fields

Sentaurus Device for Optics

- Drift-diffusion carrier transport
- Advanced optical solvers:
 - Transfer Matrix Method
 - Beam Propagation Method
 - Raytracing
 - FDTD Maxwell solver
- 3D geometry effects
- Mixed-mode simulations including the circuit periphery elements
- Carrier trapping
- Composition dependent model parameters
- Heterointerface carrier transport
- Advanced models for photon and free carrier absorption

S[®] Accelerating Innovation

SALIGh2

Organic semiconductors

Sentaurus Visual - New TCAD Visualization Platform

 Visualization product for 1D, 2D and 3D plots and structures generated by all TCAD tools

Accelerating

Innovation

Sentaurus Visual - Enhanced GUI

Better utilization of GUI real estate

Accelerating

SYNOPSYS[®] Acceleration

Sentaurus Visual - Tcl Scripting Interface

Accelerating

SYNUPSYS[®] Acceleration

© Synopsys 2013 50

Sentaurus TCAD

Radiation Analysis

Radiation Environment

• Single Event

- Due to single ionizing particle (alpha particle, heavy ion or neutron), generation of electron-hole pairs in semiconductors
- Leading to Soft-Error as Single Event Upset (SEU)
- Leading to Hard-Error as Single Event Gate Rupture (SEGR), Latch-Up (SELU) or Breakdown (SEB)

Total Dose

- Due to long radiation exposure (nuclear power, aerospace), resulting in trapped carriers in insulators
- Leading to performance degradation (increased leakage current, threshold voltage shift)

Sentaurus Device Models: Particle Interaction

- Alpha Particles
 - Analytical description of the carriers generation depending on the incident particle energy
 - 3D cylindrical distribution
- Heavy Ion
 - Analytical description of the carriers generation depending on the incident ion
 - Spatially defined charge description through LET
 - 3D cylindrical distribution

2D vs 3D Description of Charge Track

Sentaurus Device Heavy Ion Model

Electron-hole generation rate:

 $G(l, w, t) = T(t) \times R(w, l) \times G_{LET}(l)$

SYNOPSYS[®] Accelerating Innovation

Simulation of Charge Track

Models for Total Dose Radiation

- Electric-Field Dependent Yield Function
- Self-Consistent Trapping Kinetics in Oxide:
 - Standard V-model based on carrier concentration
 - Proprietary J-model based on carrier current
- Spatial Distribution of Traps
 - Region or interface-wise
 - User defined profile
- Arbitrary Energy Spectra of Traps
- Electric-Field Dependent Cross Section
- Thermal Ionization of Traps

Mixed-Mode Simulation

- Sentaurus Device is a device <u>and</u> circuit simulator
- Allows numerical devices to be embedded in SPICE netlist

Multiple Devices

Mixed-Mode Compact Models

• Standard SPICE Models

- BJT
- Berkeley SPICE 3 Version 3F5 models
- BSIM1, BSIM2, BSIM3, BSIM4
- B3SOI
- MESFET
- User-Defined
 - Compact model interface (CMI) available for user-defined models.
 - Implemented in C++ and linked to executable at run-time

Sentaurus Advantages for Rad-Hard

- 1D / 2D / True 3D
- DC, AC, Transient
- Most Advanced Transport Models in Semiconductors and Insulators
- Mixed-Mode: Numerical and SPICE Models
- Robust Numerical Algorithms
- Parallel Solvers
- Dynamic Memory Allocation
- Physical Model Interface

2D Application Examples

© Synopsys 2013 61

The leakage current increases with the dose and drain bias showing electric field dependence

Electron Current Density in SOI Device after Irradiation

Expected back-channel in irradiated SOI nMOS devices is observed

Trapped Hole Distribution in Irradiated Device

Because of self-consistent and field-dependent trapping kinetics, trapped hole distribution strongly depends on electric field

> S[®] Accelerating Innovation

SALIGHA

Transient Evolution of Trapped Hole Density after Irradiation

Sentaurus Device enables the modeling of de-trapping, depending on the energetic distribution of traps

S[®] Accelerating Innovation

SYNOPS

3D Application Examples

Structure Generation

Loaded Layout

STI formation (oxide filling) and Polysilicon / gate oxide generation

Metal generation for contacts

Silicon etching

Final boundary structure

Doping Definition

- Constant doping profile in Polysilicon and Pwell
- Analytical doping profile (Gaussian) in the Source/Drain of NMOS and PMOS Transistors
- Analytical doping profile (Gaussian) in the channel of NMOS and PMOS Transistors
- Analytical doping profile (Gaussian) in the access drain (bit line) and access gate (word line).

Meshing

- Meshing strategy:
- Refinement on doping (junctions refinement)
- Refinement at Silicon / Gate Oxide interface
- Refinement in the channel of NMOS and PMOS Transistors.
- Relaxed mesh inside the substrate
- Mesh statistics:
- Mesh nodes number: 31825
- Meshing time: 114 s

Bit Flipping

strike. The SRAM cell switched states

Accelerating Innovation

SYLIUP

Generation Rate from Particle Strike

SYNOPSYS[®] Accelerating Innovation

Dependence on Impact Points

- The heavy ion direction is set to (0, 0, -1).
- Four different heavy ions impact points are simulated:
 - Source NMOS2
 - Source PMOS2
 - Drain PMOS2
 - Oxide
- The SRAM cell does not switches states anymore for impact points in Source & Drain PMOS2 and in the oxide.

Node voltages versus time for NMOS drains as a result of a single event strike. Depending on the impact point ,the SRAM cell switched states
Total Dose Effect: 3D SOI nMOSFET

Trapped Hole and Electron Current Distributions in 3D SOI nMOS after 300kRad Irradiation

Expected trapped hole profile in the buried oxide and induced back-channel are observed in 3D

Total Dose Effect: 3D nMOS w/ LOCOS

Noffset meshing of 3D MOS with LOCOS Trapped hole density after 10kRad irradiation

SYNUPS

S[®] Accelerating Innovation

Noffset3D, normal offsetting mesh, creates fine grid along the interfaces where traps are located

Total Dose Effect: 3D Trench MOSFET

Threshold Voltage Shift

Drain Current vs. Gate Voltage

Accelerating Innovation

SYIIUPS

CMOS SOI SEU: SOI SRAM Cell Upset

SEU can be accurately modeled using a mixed-mode approach including part of the system as SPICE elements

S[®] Accelerating In<u>novation</u>

SAII0h2

SEU: 3D SRAM Cell Upset

3D SRAM structure

Node voltage response for 2 heavy ion energies S-N2 VS2[E=30Mev] VS1[E=30Mev] NWel VS2[E=5 Mev] VS1[E=5 Mev] Node Voltage (V) P-Substrate 0 1E-13 1E-12 1E-10 1E-9 1E-8 1E-11 1E-Time (s)

As expected, the three dimensional SRAM flips depending on the incident particle energy, the ion strikes into the drain of the off-nMOS

S[®] Accelerating Innovation

SYNOPS

SEU: CMOS Inverter Latch-up

Because of parasitic bipolar effects in CMOS structure, the device latches up when incident particle energy is high enough

SYIIUP

Innovation

Thank You

SYNOPSYS® Accelerating Innovation