Introduction aux détecteurs CCD

Claire Juramy

SIM-détecteurs 2014

Tour d'horizon

- Principe de fonctionnement
- Développement des détecteurs CCD pour l'astronomie, l'astrophysique et la cosmologie
- Réalisations et projets
- Détecteurs CCD pour d'autres applications
- Questions d'actualité

Structure du détecteur

- Charge-Coupled Device (Smith et Boyle, prix Nobel 2009)
- Collection de charges dans la région déplétée d'un condensateur MOS
- Efficacité quantique : 1 photon -> 1 paire e-/h+, profondeur optique
- Piégeage en surface
- Canal enterré (n-channel)
- Puits de potentiel

Matrice de pixels

- Peignes d'électrodes
- « Channel stops »
- Excès de charges : « blooming »
- Lecture sérialisée (2 à 16 canaux par détecteur)

Principe de lecture

- Transfert des charges
 - Parallèle : l'ensemble des lignes
 - Série : les pixels d'une ligne dans le registre série
 - 3 ou 4 phases
- Efficacité de transfert (CTE)

Étage de sortie

- Capacité au nœud (sensor node) : 15 fF pour 5 μ V/e-
- Amplificateur de charges intégré au CCD
 - Transistor : L*W = 4-6 μ m * 45 μ m
 - Consommation 5-10 mW par canal

Séquence de lecture

- Transfert d'un pixel, remise à zéro
- Bruit de remise à zéro : V(kTC)
- ~ 80 e- pour 15 fF
- Soustraction analogique ou digitale

CCD scientifiques

Unofficial comparison, scientific CCD versus CMOS image sensor for cell phones (e.g. iPhone 4, TSMC/OmniVision¹)

Parameter	CMOS cell phone	Scientific CCD			
# pixels	5 - 8 Megapixels	8-16 Megapixels			
Pixel size	$1.4-1.7\ \mu m$	10 – 15 μm			
Imaging area	15 mm ² (5M)	3775 mm ² (16M)			
Technology	130 nm CMOS	2.5 μm CCD			
Illumination	Back illumination	Back illumination			
Optical thickness	$\sim 3 \ \mu m$	$10-250 \ \mu m$			
Peak QE	$\sim 55\%$ (color filter)	$\sim 90-95\%$			
Operating temp	Up to 50°C	-100°C140°C			
Dark current	20-30 e-/pixel/sec	Few e-/pixel/hr			
Read noise	~ 2 e-	~ 2-5 e-			
Full well	~ 4500 e-	~ 200,000 e- (15 µm)			
Cost		~			

S. Holland

CCD pour l'astronomie visible

- Efficacité quantique élevée, gamme de longueur d'onde : 350 nm à 1100 nm
- Linéarité
- Dynamique : profondeur de puits > 100 ke-
- Bas bruit:
 - Courant d'obscurité (à -100°C) : ~ e-/pixel/h
 - Bruit de lecture : ~ 5 e- @ 100 kHz
- PSF : Point Spread Function (diffusion / taille des pixels)
- Efficacité de transfert de charges

Autres applications scientifiques

- Imagerie médicale
- Rayons X : spectro-imageur en astronomie X, synchrotron

Absorption du spectre optique

V. Radeka

Illumination

- CCD illuminé de dos (« back-illuminated »):
 - Élimine absorption, réflexions complexes
 - Avec Si dopé de résistivité normale (20-100 Ω.cm): profondeur de déplétion limitée
 - Amincissement : typiquement 10 à 20 μ m

CCD amincis

- Peu efficaces dans le rouge et proche-IR
- Franges d'interférences (« fringing »)

M. Schirmer

CCD épais

- CCD épais (classification E2V) :
 - « deep depletion CCD» : 40 μm, Si épitaxial plus résistif
 - « bulk CCD » : 70 μm, Si haute résistivité (« bulk Si »)
 - « high-rho CCD» : > 100 μm, Si haute résistivité + tension de substrat au dos
- Si haute résistivité : > 4 kΩ.cm (typiquement 10)
- Tension appliquée au dos du CCD (« backside bias ») : -40 à -70 V -> fonctionnement en diode PIN
- Inconvénients : cosmiques, dégradation aux grands angles d'incidence

Efficacité quantique

QE versus thickness; at -100°C; e2v astro multi-1 coating

P. Jorden, E2V

CCD épais : garde

- Risque de courant de fuite entre le devant et le dos du CCD
- Effets de bords

(a) Leakage current

(b) Guard diode depletion isolates front and back

P. Jorden, E2V

Traitements de la fenêtre

- Couche fortement dopée (p ~10¹⁹ cm⁻³), épaisseur 5-10 nm (affecte l'efficacité quantique UV)
- Traitement anti-reflets (« Anti-Reflective Coating »)

Spectral response of single layer (BB) compared to three e2v multi-layer coatings

CCD à porteurs h+

- CCD à porteurs de charges trous, canal p (« p-channel CCD »)
- Haute résistivité : densité de donneurs n ~10¹¹ cm⁻³ (> 4 kΩ.cm)
 3-phase Polysilicon
- Epais : jusqu'à 600 μm
- Résistance aux radiations
- Lawrence Berkeley National Laboratory, Hamamatsu

Besoins pour la lecture d'un CCD

Tensions •

Courants sur les horloges •

Biases

	e2v CCD250		ITL/STA1920A		HPK S10892-03				
						expose	readout	erase	
Back substrate	BS	-70	BB	-10	VBB	50	30	0,2	
Front substrate	FS	0	SUB	0	VGR	0	0	0	
Guard	GD	30	SC	16	-	-	-	-	
Output Drain	VOD	30	OD	27	VOD	-5	-20	-5	
Output Gate	VOG	2	OG	-2	VOG	-5	-5	-5	
Reset Drain	VRD	18	RD	15	VRD	-5	-12	-5	
Test inject source	-	-	-	-	VISV	-5	-12	-5	
Test inject gate	-	-	-	-	VIGV	0	0	0	

Clocks

	HI	LO	н	LO	н	LO	erase
Parallel	9	0	4	-11	-5	3	6
Serial	10	0,5	4	-4	-6	3	6
Reset Gate	9	0	10	-2	-6	5	
Summing Well	-	-	4	-4	-6	5	
Transfer Gate	-	-	-	-	-5	3	

Capacitances (estimated)

Parallel per phase	64	nF	unavailable		25	nF	(2K x 1K device)
Serial per phase	320	рF	unavailable		50	рF	
RG	unavailabl	e	unavailable		10	рF	
SW	-	-	-	-	10	рF	
TG	-	-	-	-	100	рF	

CCD pour l'astronomie : utilisations

- 99% des observations dans le visible
- Grands plans focaux :
 - Couverture spatiale
 - Couverture temporelle
 - Profondeur (magnitude)
- Cosmologie observationnelle : matière noire et énergie noire
 - Supernovae de type la
 - Effets de lentilles faibles (« weak gravitational lensing »)
 - Pic d'oscillation acoustique des baryons (BAO)
 - Amas de galaxie
- > Mesures de formes, photométrie précise (1 %)

MegaCam

- CCD42-90 : 2048
 x 4612 pixels,
 13.5 µm, 0.185
 arcsec/pixel
- 40 CCD, 36 utilisés : 340 Mpixel, 1 deg²
- CFHT Legacy Survey

Canada-France-Hawaii Telescope / 2003

LSST : Large Synoptic Survey Telescope

- 10 degrés carrés, 3.2 Gpixel
- CCD : 16 Mpixel, 16 canaux, pixels 10*10 μm
- CCD n-channel, épaisseur 100 μm

D'autres types de CCD

- «Inverted Mode Operation » : réduction du courant d'obscurité (/100)
 - Horloges parallèles 0/+15 V
 - Substrat +9.5 V : 2/3 électrodes sont en inversion

D'autres types de CCD

- « Frame-transfer » : surface de stockage protégée égale à la surface exposée
- « Electron-Multiplying CCD » : registre de gain entre le registre à décalage et l'amplificateur de sortie : gain par avalanche (> 500 éléments)
 - Faible bruit de lecture
 - Photométrie à comptage de photons, spectroscopie haute résolution

Mesure du gain

- Illumination uniforme (« flat fields »)
- « Photon Transfer Curve » : bruit de photon/flux
- Non-linéarité à « hauts » flux

A. Guyonnet

« Brighter – fatter »

- Covariance entre pixels voisins -> 3 pixels (au moins)
- Insensible à la longueur d'onde
- Sensible à la direction
- Pour un point : l'étalement augmente avec l'intensité

« Brighter – fatter »

 Modèle : déformation électrostatique des frontières entre pixels

Taille effective des pixels

- Variations d'efficacité quantique
- Irrégularités de fabrication
- Intrinsèque au substrat : « tree rings »
- Affectent la calibration et l'astrométrie

