Ecole de simulation de détecteurs silicium 2014 LPNHE - Paris du 15 au 17 septembre 2014

cea urme ors 111

LPNHE

Expérience pratique de simulation dans la fondeur FBK

Gabriele Giacomini FBK (Trento, Italie) mercredi 17 septembre 2014

Centre for Materials and Microsystems http://cmm.fbk.eu

MTLab Fabrication Facility http://mtlab.fbk.eu

Silicon Facility Expertise

TCAD simulation CAD design

Fabrication

Device testing

Material Characterization:

- XPS
- SIMS
- ToF-SIMS
- TXRF
- AFM
- SEM

Custom CMOS design Development of ROIC by exploiting state of the art CMOS tech (external services)

MTLab Facility: MicroFabrication Area

Two separate clean rooms

- 500m² of clean room (class 10-100)
- 200m² of clean area (class 100-1000) equipped for MEMS technology

6-inch wafers (Si, Quartz, Glass) – 0.35 um processing

- Dry/wet oxidationsputtering Metallization
- Diffusion
- •LPCVD
- •PECVD
- •Projection lithography: CD $2\mu m$
- •Stepping lithography: CD 350nm
- Ion Implantation
- Dry/wet etching

Centre for Materials and Microsystems

Silicon Radiation Sensors http://srs.fbk.eu

Integrated Radiation and Image Sensors http://iris.fbk.eu

Development of silicon radiation sensors

Sensors on highresistivity substrates

- pixel detectors
- strip detectors
- drift detectors
- 3D detectors

Sensors with internal gain for light detection

- Silicon Photomultipliers

- SPADs

Pixel detectors

Medipix 1&2

NA48/ALICE experiment

- Medipix1: pixel size 170x170um²
- Medipix2: pixel size 55x55um²

Substrate thick.: up to 1.5mm

- ALICE SPD layout
- pixel size 50x400um²

Substrate thickness: 200µm

Leakage current ~100pA/cm² for 300um substrates

Strip Detectors: single side

Custom development of strip detectors:

- DC/AC coupled,
- very low leakage,
- high yield

Strip Detectors: double side

AMS experiment (@ISS)

ALICE experiment (@LHC)

700 <u>large-area</u> <u>double-sided</u> in-spec detectors fabricated in 2002-2004. 600 <u>large-area</u> <u>double-sided</u> in-spec detectors fabricated in 2003-2005. ALICE Industrial Awards in 2006

Active edge

- 4.5µm wide trench
- 200µm deep
- polysilicon filled

INFN-BA, CERN

pixel sensors compatible with ALICE ROC (epi wafers, 100µm thick + sub)

 pixel sensors compatible with ATLAS FE-I4 (200µm-thick FZ + waf-bond sub)

LPNHE Paris

Silicon Drift Detectors

2 public project:

- INFN/INAF (2011-) development of very large linear SDD for astrophysics experiment

- ESA - PoliMi (2010-2012)

development of gamma ray spectrometer based on SDD coupled to LaBr₃ scintillator

Silicon Drift Detectors

X-ray detector

gamma spectrometer

⁵⁷Co, ¹³⁷Cs, ⁶⁰Co spectra measured with the SDD coupled to a 1" LaBr₃ crystal

Energy resolution @ 662keV measured with a PMT = 3.2%

C. Fiorini, IEEE TNS, VOL. 60, NO. 4, AUGUST 2013 2923

Silicon photomultiplier

SiPM

array of tiny SPADs connected in parallel to give proportional information

Main Current Projects

EU projects:

- Sublima (2010 2014)
- Insert (2014 ...)

National projects:

• with INFN (2013-2015)

Application fields:

detection of faint light with high time resolving capability:

- nuclear medicine
- biology
- physics experiments
- instrumentation for material analysis

Simulations des parts de la fabrication

•oxidation and diffusion

 \rightarrow exemple: deux problems a resoudre

- ARC
- •Implantation 1D
 - → comment l'utiliser dans DEVEDIT

Comportement des détecteurs

•explication de problèmes mesuré dans les détecteurs réels

→ exemple: effet de l' humidité

• développement des nouvelle détecteurs

→ exemple: XAMPS (transient)

• détermination des propriétés dynamiques

→ exemple: temps de dérive des électrons dans une SDD

• beaux images pour les publications

→ exemple: PT in SDD

Simulations des parts de la fabrication:

- •oxydation and diffusion
 - \rightarrow exemple: deux problèmes a résoudre
- ARC
- •Implantation 1D
 - → comment l'utiliser dans DEVEDIT

Comportement des détecteurs

•explication de problèmes mesuré dans les détecteurs réels

→ exemple: effet de l' humidité

• développement des nouvelle détecteurs

→ exemple: XAMPS (transient)

• détermination des propriétés dynamiques

→ exemple: temps de dérive des électrons dans une SDD

• beaux images pour les publications

→ exemple: PT in SDD

oxydation

Bien étudié: SILVACO n'est pas nécessaire.

on line calculateur: http://www.cleanroom.byu.edu/OxideTimeCalc.phtml

Pour oxyder on fait une diffusion:

go athena simflag = "-P 2" # mesh define line x loc=0.00 spac=0.10 line x loc=0.5 spac=0.10 line y loc=0.00 spac=0.002 line y loc=0.25 spac=0.002 line y loc=0.5 spac=0.005 line y loc=20 spac=1

init wafer

init silicon c.phosphor=5.5e11 orientation=100 two.d method two.dim grid.oxide=0.002 gridinit.ox=0.001 #

diffus time=60 temp=1000 weto2

nous pouvons lever l'oxide:
etch oxide all

struct outfile=1000C_1h_wet.str tonyplot 1000C_1h_wet.str

quit

Le wafer est *n*-type mais nous le trouvons *p*-type âpres l'oxydation

go athena simflag = "-P 2" # mesh define line x loc=0.00 spac=0.10line x loc=0.5 spac=0.10line y loc=0.25 spac=0.002line y loc=0.25 spac=0.002line y loc=0.5 spac=0.005line y loc=20 spac=1

init wafer init silicon c.phosphor=5.5e11 orientation=100 two.d method two.dim grid.oxide=0.002 gridinit.ox=0.001 # la rampe diffus time=50 temp=500 t.final=1000 nitro # croissance de l'oxide diffus time=120 temp=1000 dryo2

struct outf=oxidation.str

quit

Pour faire croire l'oxide sur le silicon, on y fait une oxydation âpres une rampe, qui porte la fournaise a la correct température:

(a

(b)

(C)

Problème II:

Nous n'avons pas de contact parmi un *p*-poly et un *p*-silicon

```
go athena simflag = "-P 2"
# mesh define
line x loc=0.00 spac=0.10
line x loc=0.5 spac=0.10
line y loc=0.00 spac=0.002
line y loc=0.25 spac=0.002
line y loc=0.5 spac=0.005
line y loc=20 spac=1
```

init wafer

```
init silicon c.phosphor=5.5e11 orientation=100 two.d method two.dim grid.oxide=0.002 gridinit.ox=0.001
```

```
deposit oxide thick=0.1
```

```
implant boron dose=1e15 energy=20 rotation=0 tilt=7 amorph
#
```

```
etch oxide all
```

```
deposit polysilicon thick=0.50 divisions=100
```

implant bf2 dose=1e14 monte energy=50 rotation=0 tilt=7 amorph

```
diffus time=20 temp=800 nitro
```

struct outfile=800C_20min.str tonyplot 800C_20min.str

oxide
B-implant
<i>n</i> -silicon bulk

(b)

(a)

poly

(thanks to G. Paternoster) 21

quit

Problème II: nous avons mesure' que il n'y a pas de contact !

 \rightarrow La simulation nous dit que le poly n'a pas assez de B dans le polisilicon!

(thanks to G. Paternoster) 23

Anti Reflective Coating (ARC)

25

quit

Distance from interface

Comment utiliser le profile dans Devedit - I

Comment utiliser le profile dans Devedit - II

Impurities \rightarrow Doping Profiles \rightarrow Load ...

Comment utiliser le profile dans Devedit - III

Comment utiliser le profile dans Devedit - IV

File r Regions r Impurities r Mesh r Help r 1 1 2 3 4 5 6 7 8 9 1 Impurity r Boron 1 1 1 1 0 Microns Color r Impurity r 0 Microns 1 0 0 Microns Start X: 0 0 Microns 2 0 Microns End X: 5 Microns End Y: 0 Microns 2 0 0 Microns Impurity r 0 Microns 2 0 0 Microns End Y: 0 Microns 2 0 0 Microns Impurity r 0 Microns 2 0 0 Microns Impurity r 0 Microns 2 0 0 Microns Impurity r 0 Microns 2 0 0 Impurity r 0 Impurity r 0 Impurity r 2 0 0 0
Add Impurity Impurity Soron Color S Draw Mode Rectangle Line Circle/Ring Start X: 0 0 Microns Start Y: 0 0 Microns End X: 5 Microns End Y: 0 Microns Peak Concentration: 2.6473e+18 Reference Value: 100000 Join Function S Multiply W Rolloff: S pwell Mode: S Log Extrapolation
Image: Comparison of the second se
∫ ≰ j≬i=] Convright (c) 1992–2006 SILVACO International In

Comment utiliser le profile dans Devedit - V

•oxidation and diffusion

 \rightarrow exemple: deux problems a resoudre

- ARC
- •Implantation 1D
 - → comment l'utiliser dans DEVEDIT

Comportement des détecteurs

•explication de problèmes mesuré dans les détecteurs réels
 → exemple: effet de l' humidité

développement des nouvelle détecteurs

 \rightarrow exemple: XAMPS (transient)

- détermination des propriétés dynamiques
 - → exemple: temps de dérive des électrons dans une SDD
- beaux images pour les publications
 - \rightarrow exemple: PT in SDD

I - Effet de l'humidité dans un 3D

La courant dépende de l'humidité: avec une humidité élevée il y a un cassage

go atlas simflag="-P 2"

mesh infile=XAMPS.str cylindrical

```
contact name=drain neutral
contact name=gate neutral
contact name=bulk neutral
contact name=substrate neutral
contact name=source current
contact name=collector neutral
#
material region=1 taun0=1e-4 taup0=1e-4
interface qf=3e11
models bipolar
#
                                                            source
method newton
        init
solve
#
        vsubstrate=0 vstep=-5 vfinal=-75 name=substrate
solve
        vbulk=0 vstep=-1 vfinal=-10 name=bulk
solve
        vgate=0 vstep=-1 vfinal=-2 name=gate AC freg=1e6
solve
#
log outf=XAMPS_transient.log
#
        vgate=-2 ramptime=1e-6 tstop=1e-6 tstep=1e-11
solve
save outf=XAMPS AT 1us.sta
#
        vgate=-10 ramptime=1e-8 tstop=1.001e-3 tstep=1e-11
solve
save outf=XAMPS AT 1ms.sta
#
solve
        vgate=-2 ramptime=1e-8 tstop=1.002e-3 tstep=1e-11
#
quit
```

II - XAMPS

- @ t=0, V_{gate}= -2 V et le canal est ouvert:
 → La "source" est a GND, comme le drain
- @t>0, V_{gate} ~ 10V et le canal est ferme:
 → la courant reste dans le source

Integration time

II - XAMPS

Dans un situation stationnant, les électrons ne peuvent pas rester dans la source mais il doivent aller dans le drain: ils ont fait la source assez négative qu'elle peux ouvrir le canal.

 \rightarrow La simulation doit être un transient

Microns

Microns

Courant a l'anode

L'intégral des impulsions de courant est le même (la charge du laser c'est la même)

IV - Jolies figures pour les publications

C. Fiorini, IEEE TNS, VOL. 60, NO. 4, AUGUST 2013 2923

43