High Power Input Couplers and HOM Couplers for Superconducting Cavities Eiji KAKO (KEK, Japan)

Part-I ; INTRODUCTION

Part-II ; INPUT COUPLERS

Part-III ; HOM COUPLERS

Part - I INTRODUCTION

References (1)

 SRF2011 at Chicago; Tutorial by W.-D. Moeller (DESY), "Design and Fabrication Issues of High Powerand Higher Order Modes- Couplers for SC Cavities"

2. SRF2009 at Berlin;

Tutorial by S. Noguchi (KEK), "Design and Fabrication Issues of High Power and Higher Order Modes Couplers for SC Cavities"

References (2)

3. Textbook;

- "RF Superconductivity for Accelerators", by H. Padamsee, J. Knobloch and T. Hays
 - 18. Input Power Couplers and Windows
 - 16. Higher Order Mode Couplers
- 4. TTC CW-SRF Workshop 2013' at Cornell; http://www.lepp.cornell.edu/Events/TTCWorkshop/
 - . CW Power Couplers
 - . HOM Absorber

Introduction (1)

The primary role of the input coupler: to transfer RF power from the generator to the cavity and to the beam.

Introduction (2)

The primary role of the HOM coupler: to remove beam induced power from the cavity in order to avoid resonant buildup of beam induced voltage, and in order to avoid beam instabilities.

Introduction (3)

Cavity package of STF 9-cell cavity at KEK for ILC

Importance of a Harmonized System Design:

- Only SC cavity is not a special component.
- A harmonized design of a whole cavity package including an input coupler, HOM couplers, a frequency tuner, magnetic shields and a He-tank is a most crucial task for a stable operation in cryomodule with beam.
- Especially, input couplers and HOM couplers are critical components in SC cavity system.

My old experience on Input Coupler

About 25 years ago in TRISTAN at KEK;

508MHz, CW 50kW Input coupler with one warm window and water cooling

In the initial stage, no TiN coating no Arc sensor

> Importance of TiN coating and Interlock system

My old experience on HOM Coupler

About 25 years ago in TRISTAN at KEK;

heating due to multipacting
not an efficient cooling
shift of a rejection frequency

508MHz, coaxial antenna type, coupled E-field, HOM coupler made of niobium

Part - II High Power Input Couplers

The input coupler:

- 1. has to transfer RF power from the generator to the cavity and to the beam.
- 2. must provide a match between the generator impedance and the combined impedance of the cavity-beam system, so as to minimize the wasted reflect power.
- 3. may need to be an adjustable coupling.

Contents

- 1. Coupling to cavity
- 2. From design to operation
- 3. Choice of Coupler Type
- 4. Design Issues
- 5. Fabrication Issues
- 6. RF Conditioning Issues
- 7. State of the Arts

High Power Input Coupler (1)

Coupling to cavity :

- Circuit for cavity with beam
- Useful equations on coupling
- Optimum coupling with beam
- Calculation of coupling by HFSS
- Measurement of coupling by N.A.

Circuit for cavity with beam

Useful equations on coupling (1)

Accelerating gradient (E_{acc}): $E_{acc} = \frac{\sqrt{R/Q}}{L_{cavity}} \sqrt{\omega W} = Z_{cavity} \sqrt{P_0 \cdot Q_0}$

Cavity loss (
$$P_o$$
) :
 $P_0 = \frac{\omega W}{Q_0}$

$$\begin{array}{l} \textbf{Beam power (P_{beam}):} & \textbf{I}_{beam} \\ P_{beam} = I_{beam} \cdot V_C \cdot \cos \phi & \phi: B \\ = I_{beam} \cdot E_{acc} \cdot L_{cavity} \cdot \cos \phi \end{array}$$

R/Q : Impedance of accelerating mode L_{cavity} : Cavity effective length ωW : Stored energy inside a cavity Z_{cavity} : Constant parameter Q_0 : Cavity unloaded Q V_C : Cavity accelerating voltage I_{beam} : Beam current ϕ : Beam phase

Useful equations on coupling (2)

Generator RF power (P_a); $P_{g} = P_{0} + P_{beam}$

•
$$P_{ref} \sim 0$$
 (matching condition)

•
$$P_g = P_{in}$$
 (no transmission loss)

•
$$P_0 + P_{beam} >> P_t$$
, P_{hom1} , P_{hom2}

Coupling constant (β) :

$$\beta = \frac{P_g}{P_0} = 1 + \frac{P_{beam}}{P_0} \cong \frac{Q_0}{Q_L}$$

$$\frac{1}{Q_L} = \frac{1}{Q_{in}} + \frac{1}{Q_0} + \frac{1}{Q_t} + \frac{1}{Q_{homl}} + \frac{1}{Q_{hom2}}$$
• $Q_{in} \leftrightarrow Q_0 \leftrightarrow Q_t$, Q_{hom1} , Q_{hom2}

$$Q_L \cong Q_{in}$$

Loaded
$$Q(Q_L)$$
;

$$Q_L = \frac{Q_0 \cdot P_0}{P_{beam}} \cong \frac{Q_0}{\beta}$$

Eacc = 30 MV/m, $L_{cavity} = 1.0 \text{ m}$, $I_{beam} = 10 \text{ mA}$ $P_0 = 100 \text{ W}$, $Q_0 = 1.0 \times 10^{10}$ $\rightarrow P_{beam} = 300 \text{ kW}$, $Q_{in} = 3.3 \times 10^6$, $\beta = 3,000$

Useful equations on coupling (3)

Optimum coupling ($Q_L \sim Q_{in} \leftrightarrow Q_0$);

$$Q_{in} \cong \frac{V_c}{(R/Q) \cdot I_{beam} \cdot \cos \phi}$$

Required RF power under matching condition ($P_{ref} \sim 0$);

$$P_g = \frac{V_c^2}{4 \cdot (R/Q) \cdot Q_L} \left[1 + \frac{I_{beam} \cdot (R/Q) \cdot Q_L \cdot \cos \phi}{V_c} \right]$$

In case of
$$I_{beam} \sim 0$$
;

$$E_{acc} = \frac{\sqrt{R/Q}}{L_{cavity}} \cdot \sqrt{4 \cdot P_g \cdot Q_L} = Z_{cavity} \sqrt{P_t \cdot Q_t}$$

Optimum input coupling with beam

Optimum coupling; $\frac{1}{Q_{in}} = \frac{1}{Q_0} \left(1 + \frac{P_{beam}}{P_0} \right) = \frac{1}{Q_0} + \frac{1}{Q_{beam}}$

$P_{beam} >> P_0$; $Q_{in} = Q_{beam}$, depends on beam current adjustable coupling may be useful.

 $Q_{in} \leq 10^{7} \text{ is desireble for better RF control.}$ (boarder bandwidth) $\Delta f = \frac{f}{2Q_{in}} \begin{bmatrix} f = 1.3 \text{ GHz} \\ Q_{in} = 3 \times 10^{7} \\ \Delta f = 22 \text{ Hz} \end{bmatrix}$

Calculation of Coupling by HFSS

Measurement of Coupling (Q_{ext}) by N.A.

2-cell cavity with 2 input and 5 HOM couplers

- 1. RF-in through Monitor;
 - $Q_{L}, P_{inp1}, P_{inp2}, P_{hom1}, P_{hom2}, ,$ $Q_{inp1} \times P_{inp1} = Q_{inp2} \times P_{inp2}$

$$Q_{inp_{1}} \approx Q_{L} \cdot \left(\frac{P_{inp_{2}}}{P_{inp_{1}}} + 1\right)$$
$$Q_{inp_{2}} \approx Q_{L} \cdot \left(\frac{P_{inp_{1}}}{P_{inp_{2}}} + 1\right)$$

2. RF-in through Input-2; Q_L , P_{inp1} , P_t , P_{hom1} , P_{hom2} , , $Q_{inp1} \times P_{inp1} = Q_t \times P_t$

$$Q_t = \frac{Q_{inp_1} \cdot P_{inp_1}}{P_t}$$

Calibration of Eacc

$$Q_{\text{hom}_1} = \frac{Q_t \cdot P_t}{P_{\text{hom}_1}}$$

High Power Input Coupler (2)

from coupler design to stable beam operation

Design/Calculation

Conditioning at test stand

Fabrication

Cavity string assembly

RF measurement

Cleaning/Assembly Pumping/Baking

Conditioning at RT in cryomodule

High power operation with beam

High Power Input Coupler (3)

Choice of Coupler Type :

- Coaxial or Waveguide
- Disk or Cylindrical Window
- Single or Double Windows
- Fixed or Variable Coupling
- CW or Pulsed operation
- Double Feed Couplers

Coaxial or Waveguide

KEK-B Cavity (508MHz) with a coaxial coupler

CESR-B Cavity (500MHz) with a waveguide coupler

Disk or Cylindrical Window

Tristan-type coaxial disk ceramics RF window with choke structure

TTF-V input coupler for ILC with cylindrical ceramic windows

Single or Double Windows

Fixed or Variable Coupling

CW or Pulsed Operation

Cooling of inner conductor is necessary in ave. $P_{RF} > 3$ kW.

Double Feed Couplers

High Power Input Coupler (4)

- Design issues :
- RF Design
- RF Power Dissipation
- Thermal Calculation
- Mechanical Analysis
- Multipactor Simulation

RF Design (HFSS) (1)

Coupling W.G. + Cold window

RF Design (HFSS) (2)

RF Power Dissipation (MAFIA-T2)

Thermal Calculation (MAFIA-T2)

Mechanical Analysis (ANSYS)

IFMIF Coupler (CEA-Saclay / CPI Beverly) by H. Jenhani
Multipacting Simulation

High Power Input Coupler (5)

Fabrication issues :

- Ceramics Window
- Metalizing
- Brazing
- Copper Plating
- Bellows
- TiN Coating

These are essential technologies for coupler fabrication. But, the details are usually not opened by fabrication companies.

Ceramics Window

Al₂O₃ ceramics Purity; HA95 ~95% HA99 ~99% ε* ~ 9.0

Metalizing by sintering of Mo-Mn paste

Thermal cycle test by liquid N₂ of ceramic-disks & thin Cu-plating.

Brazing

Two steps of Brazing ; 1st brazing by Cu/Au-composition at ~1000°C 2nd brazing by Cu/Ag-composition at ~800°C Vacuum Furnace or Hydrogen Furnace

TiN Coating

- Al₂O₃ has a high SEC:
 - coating of the surface on the vacuum side is a must
- TiN has a low SEC and is a stable composition
- Deposition processes are
 - sputtering KEK
 - evaporating **DESY**
- Ammonia is used to convert the Ti to TiN

W.- D. Möller, DESY in Hamburg

15th International Conference on RF Superconductivity Chicago, July 25 - 29, 2011

W.-D. Moeller, DESY, Hamburg

Copper Plating

Cu-plating Samples : SUS 1.0t Ni-strike **0.2 μm Cu 5** µm

after anneal at 800 °C in hydrogen furnace

•

CuSO₄

High Power Input Coupler (6)

RF Conditioning issues :

- Cleaning Procedure and Assembly
- High Power Test Stand
- Diagnostics and Interlocks
- Conditioning Time at Test Stand
- Cryomodule Assembly
- Conditioning Time in Cryomodule
- Dynamic Heat Loads

Cleaning Procedure and Assembly

with ultra-sonic agitation

Ultra-pure water rinsing Low pressure water rinsing with ultra-pure water

Installation of cold parts

Pumping and leak-check

RF measurements

High Power Test Stand

Diagnostics and Interlocks

Conditioning Time at Test Stand

8 pairs of STF2 input couplers

2013' Jan. ~ May

S1-G Cryomodule Assembly (STF2 coupler)

Cavity string assembly

Hanging under He-GRP

5K, 80K thermal anchor

Installation into vacuum vessel

Warm coupler assembly

Attachment of doorknob WG

Eiji Kako (KEK, Japan)

SRF2013 Tutorial at Ganil, Sept. 19, 2013'

S1-G Cryomodule Assembly (TTF3 coupler)

Transportation with coupler

Cavity string assembly

Hanging under He-GRP

5K and 80K thermal anchor

Installation in vacuum vessel

assembly

Waveguide assembly

SRF2013 Tutorial at Ganil, Sept. 19, 2013'

Conditioning Time in S1-G Cryomodule

Dynamic Heat Loads (1)

Dynamic loss measurements in S1-G Cryomodule (2010') TTF3 STF2 TTF3 STF2 4 C 4 A 4 C **A-3** A-2 4 A **C-1** A-2 C-4 Cavities Cavities Cavities Cavities Cavities Cavities Nov. 17 Nov. 19 Nov. 23 Nov. 24 Nov. 25 Nov. 26 Nov. 30 Date Dec. 2 Dec. 3 Dec. 9 Dec. 10 25.2 32.3 38 32 32 20.0 26.9 Gradient 28 32 25.4 20.4MV/m MV/m Detune Detune 1.44 W 2.8 W 2.6 W Dynamic 0.84 W 2.7 W 6.9 W 4.8 W 9.6 W 4.8 W Loss 0.09 W 0.18 W 0.7 W 1.8 W 1.2 W 0.5 W 4.6 W 0.2 W 2.5 W 2.6 W Detuned 1.6 W Loss 0.75W 1.26 W 2.0 W 2.9 W 1.3 W 2.5 W 4.4 W 7.0 W 3.2 W Dynamic Loss at Cavity 6.5E9 4.3E9 4.2E9 Q_0 8.8E9 4.3E9 C1=25.2 C1=22.2 A1=15.8 C1=20.1C2=18.9 C2=NA A2=37.6 C2=NA C3=14.9 A3=32.9 C3=17.6 C3=14.1 Dynamic losses of KEK couplers was 9 times C4=28.8 C4=23.0 C4=24.3 A4=21.4 A1=15.3 A1=12.3 larger than those of TTF3 couplers. A2=30.4 A2=37.4 A3 = 32.4A3=26.0 A4=20.9 A4=16.7

Dynamic Heat Loads (2)

Dynamic loss measurements in S1-G Cryomodule (2010')

TTF3 Input Coupler

Much higher temperature rises were observed in KEK-STF2 coupler.

Dynamic Heat Loads (3)

Thermal anchors with efficient cooling are also important to reduce heat loads.

High Power Input Coupler (7)

- State of the Arts :
- Pulsed coupler for XEFL/ILC
- CW coupler for ERL
- CW/HD coupler for Proton Linac
- CW coupler for Low- β structure
- CW waveguide input coupler
- High power performance

Pulsed coupler for XEFL/ILC (1.3GHz)

2 windows, no cooling

STF2 Coupler (KEK)

TTF3 Coupler (DESY)

TTF-V Coupler (LAL)

CW coupler for ERL (1.3GHz)

LN₂ Vessel

cavity

cERL Injector Coupler (KEK)

77

Coupling Cavity

ERL Injector Coupler (Cornell)

cERL ML Coupler (KEK) 2 windows, N₂ gas cooling

window,

water cooling

CW/high-duty coupler for Proton Linac

SNS Coupler (ORNL) 805MHz

ADS Coupler (KEK) 972MHz

Project-X Coupler (FNAL) 325MHz

CW coupler for Low- β structure

CW Waveguide Input Coupler

Original CEBAF 5-cell cavity (JLab) 1.5GHz Dogleg waveguide

1.5GHz, 2.5kW rectangular WG RF window (TiO₂ ceramics)

High current cavity for ERL/FEL (JLab) 1.5GHz

CESR-B cavity (Cornell) 500MHz

CEBAF upgrade 7-cell cavity (JLab) 1.5GHz

High power performance of single-window couplers

Facility	Frequency	Coupler type	RF window	Qext	Max. power
TRISTAN /KEK	508 MHz	Coaxial, Fixed	Coaxial disk	1×10 ⁵	test 200kW, CW oper. 70kW, CW
KEK-B /KEK	508 MHz	Coaxial, Fixed	Coaxial disk	7×10 ⁴	test 800kW, CW oper. 380kW, CW
ADS /KEK	972 MHz	Coaxial, Fixed	Coaxial disk	5×10 ⁵	test 2.0MW pulse oper. 350kW pulse
SNS /ORNL	805 MHz	Coaxial, Fixed	Coaxial disk	-	test 2.0MW pulse oper. 350kW pulse
SPL/Saclay	704 MHz	Coax Fix	Coax. disk	-	test 1.2MW pulse
cERL-Inj. /KEK	1300 MHz	Coaxial, Fixed	Coa×ial disk	1×10 ⁶	test 40kW, CW oper. 10kW, CW
SPIRAL-2	88 MHz	Coaxial, Fixed	Coaxial disk	5×10 ⁵ And 1×10 ⁶	test 20kW, CW oper. 12kW, CW
IFMIF	175 MHz	Coax Fix	Coax. disk	6×10 ⁴	spec. 200kW, CW
B <i>ERL</i> inPro	1300 MHz	Coax Fix	Coax. disk	1×10 ⁵	spec. 130kW, CW

High power performance of double-window couplers

Facility	Frequency	Coupler type	RF window	Qext	Max. power
TTF3 /DESY	1300 MHz	Coaxial, Variable	Cylindr.	0.1- 2×10 ⁷	test 1.0MW pulse oper. 350kW pulse
TTF-V /LAL	1300 MHz	Coaxial, Fixed	Cylindr.	3×10 ⁶	test 2.0MW pulse oper pulse
STF2 /KEK	1300 MHz	Coaxial, Variable	Coaxial disk	2-4×10 ⁶	test 1.5MW pulse oper. 450kW pulse
ERL Inj. /Cornell	1300 MHz	Coaxial, Variable	Cylindr.	0.9- 8×10 ⁵	test 60kW, CW oper. 40kW, CW
cERL-ML /KEK	1300 MHz	Coaxial, Variable	Coaxial disk	1-4×10 ⁷	test 40kW, CW oper. 15kW, CW
TT3-CW /HZB	1300 MHz	Coaxial, Variable	Cylindr.	3.6×10 ⁶	test8kW, CWspec.10kW, CW

Summary

- High power input couplers are one of the most critical components of a superconducting RF cavity system.
- High power input coupler includes varieties of key technologies in design, fabrication, conditioning and operation.

Part - III Higher Order Mode Couplers

Higher Order Modes Coupler (1)

- 1. A charge passing through a cavity can excite modes.
- 2. The mode excited by bunches can seriously affect subsequent charges passing through the cavity.
- 3. If not sufficiently damped, they can lead to beam instabilities and beam loss.
- Even without beam break-up, HOMs can degrade the beam quality, leading to loss of luminosity or loss of brightness.

- 5. HOMs increase the cryogenic losses due to the additional power dissipation in the cavity wall.
- The HOM coupler/damper:
- must remove beam induced power from the cavity in order to avoid resonant buildup of beam induced voltage, and in order to avoid beam instabilities.
 Three types of HOM coupler/damper;
 - 1. waveguide, 2. coaxial, 3. beam tube.

Contents

- 1. Design Considerations
- 2. Waveguide HOM Coupler
- 3. Coaxial HOM Coupler
- 4. Beam-tube HOM Damper
- 5. RF Feedthrough

Design Considerations (1)

Requirements for a HOM coupler:

- Damping of all dangerous higher order modes.
- Very small coupling with the fundamental mode.
- Precise tuning of the filter; $Qext > 10^{11}$.
- Effective cooling of superconducting parts to avoid excessive heating.
- Simple design for easy cleaning to remove dusts.
- Cost reduction.

Requirements for a HOM damper:

- Damping of all dangerous higher order modes.
- Choice of broad-band absorbing material; Ferrite, SiC, AIN, Glassy carbon, etc...
- Preferable operating temperature for cooling.
- Efficient cooling method.
- Low outgassing property in vacuum.
- Reliable cleaning procedure for dust free.
- Cost reduction.

Waveguide HOM Coupler

Original CEBAF waveguide HOM couplers at 2K (JLab)

B. Rimmer, JLab

- Cut-off frequency of WG; no tuning in the high pass filter.
- WG flange to be far enough from beam tube.
- Matching stub on beam tube in opposite side.

Glassy-carbon ceramic

AIN-based composites

Coaxial HOM Coupler (1)

HOM Couplers for 1.3GHz TESLA 9-cell Cavity (DESY)

2 HOM couplers (welded) <P_{HOM}> ~ few watts

Coaxial HOM Coupler (2)

HOM Couplers for 508MHz TRISTAN 5-cell Cavity (KEK)

2 HOM couplers (demountable)

Eiji Kako (KEK, Japan)

SRF2013 Tutorial at Ganil, Sept. 19, 2013'
Coaxial HOM Coupler (3)

HOM Couplers for 972MHz ADS 9-cell Cavity (KEK) 2 HOM couplers (demountable)

SRF2013 Tuto

Cooling port

Cooling port

Pick up antenna

Output port

Beam pipe

Coaxial HOM Coupler (4)

Eiji Kako (KEK, Japan)

SRF2013 Tutorial at Ganil, Sept. 19, 2013'

Coaxial HOM Coupler (5)

HOM Couplers for 1.3GHz cERL 2-cell Cavity (KEK)

Beam Tube HOM Damper (1)

HOM Damper for 500MHz CESR-B Cavity (Cornell)

S. Belomestnykh, Cornell

Cornell CESR HOM Load

- Ferrite absorber tiles
- Water cooled

Beam Tube HOM Damper (2)

HOM Damper for 508MHz KEK-B and Crab Cavity (KEK)

SRF2013 Tutorial at Ganil, Sept. 19, 2013'

Beam Tube HOM Damper (3)

HOM Damper for 1.3GHz ERL Injector and ML Cavity (Cornell)

Cornell ERL injector HOM Load

- 3 types of absorber tiles
- One was charging up 🛞
- Operated at 80 K
- Complicated to mount
 - Ferrite tile absorber Cooled at 80K

Main Linac HOM Absorbers

SiC ring absorber

Cooled

- Full-circumference heat sink to allow at 40-80K >500W dissipation @ 80K
 - Broadband SiC absorber ring
 - Includes bellow sections
 - Flanges allow easy cleaning ٠
 - Zero-impedance beamline flanges •

R. Eichhom, Cornell

Beam Tube HOM Damper (4)

HOM Damper for 1.3GHz cERL ML 9-cell Cavity (KEK)

HIP ferrite model

 Center part of HOM absorber before manufacturing Comb-type bridge and 80K anchor

HOM absorber

- HOM absorber located on 80K region
- Heat load of 150W/cavity is estimated for 100 + 100mA electron beam with 3ps bunch length
- New IB004 ferrite is HIP bonded on Cu pipe
 - Original IB004 is used for KEKB HOM absorber
- Outside: bellows, Inside: Comb-type RF bridge

K. Umemori, KEK

- HIP Ferrite absorber
- Cooled by nitrogen, 80K
- Very slow cool-down speed

Beam Tube HOM Damper (5)

HOM Damper for 1.3GHz XFEL 9-cell Cavity (DESY)

RF Feedthrough (1)

RF Feedthrough for 1.5GHz CEBAF-Upgrade 7-cell Cavity (JLab)

Cooling of HOM coupler, 3rd Feed through

High heat conductivity feedthrough, ensuring thermal stabilization of Nb antenna below the critical temperature (9.2 K) at 20 MV/m for the cw operation.

Jefferson Lab development for the 12-GeV CEBAF upgrade

- Al₂O₃ replaced by single crystal sapphire directly brazed to a copper sleeve
- \Rightarrow higher thermal conductivity
- copper interface for 2K connection

15th International Conference on RF Superconductivity Chicago, July 25 - 29, 2011

W.-D. Moeller, DESY, Hamburg

RF Feedthrough (2)

RF Feedthrough for 1.3GHz XFEL 9-cell Cavity (DESY)

SRF2013 Tutorial at Ganil, Sept. 19, 2013'

RF Feedthrough (3)

RF Feedthrough for 1.3GHz cERL 2-cell Cavity (KEK)

Summary

 Higher order modes couplers are one of the critical components of a superconducting RF cavity system.

 Higher order modes coupler includes varieties of key technologies in design, fabrication, conditioning and operation.

I would like to acknowledge to all colleagues, who have contributed to this talk.

END

Thank you for your attention.