RF 2013 Tutorial

CAEN, FRANC

BEYOND NIOBIUM
 Anne-Marie Valente-Feliciano
 Thomas Jefferson National Accelerator Facility
 Jefferson Science Associates LLC

Outline

-Motivation
-Which Superconductors for SRF Cavities?
-Nb compounds: NbN, NbTiN

- A 15 Compounds: $\mathrm{Nb}_{3} \mathrm{Sn}, \mathrm{V}_{3} \mathrm{Si}, \ldots$
- MgB_{2}
- Oxypnictides
-SIS Multilayer Structures
- Concluding Remarks

Why looking beyond Nb?

Nb has the highest critical temperature $\mathrm{T}_{\mathrm{c}}(=9.25 \mathrm{k})$ and the highest lower critical magnetic field $H_{c 1}(\approx 180 \mathrm{mT}$) of any elemental superconductor

Cornell 60 mm aperture re-entrant cavity LR1-3 March 14, 2007
Data from the Jlab, KEK, Cornell and other groups

Breakdown fields close to the de-pairing limit of $50 \mathrm{MV} / \mathrm{m}$ for Nb have been achieved Best Nb cavities approaching their intrinsic limit at $H_{\max }=H_{C}$
For further improved cavity RF performance, innovation needed
Possibilities to use higher performance superconductors other than Nb ?

Looking beyond Nb - Potential Benefits

>Reduced material costs

- Use of inexpensive, highly formable materials with higher thermal conductivity such as Cu or Al
$>$ Simplified engineering, fabrication and assembly
-Separation of cavity structure from superconducting surface
- Maximum flexibility \& largest variety of options in design of integrated cavity/cryostat structures
$>$ Higher gradients
Increasing gradients reduces capital expense of cryomodules potentially several $\$ 100 \mathrm{M}$ savings \& minimize conventional facilities
>Lower RF losses
Low loss (high Q) cavities reduce He costs, >\$10M potential capital savings, and several $\$ \mathrm{M} /$ year in operating costs
$>$ Potentially higher operating temperatures (>4.2K)

Which materials are suitable for SRF cavities?

Highest Tc=164K (under GPa)

Critical Field

The superheating field $\mathrm{H}_{\text {sh }}$ is the field up to which the Meissner state metastably persists above Hcı
For type-II superconductors, at $\mathrm{T}=\mathrm{O}$ in the clean limit with a Gindzburg-Landau parameter $K=\lambda / \xi \geqslant 1, H_{\text {sh }}$ has been calculated to be $\sim 0.75 \mathrm{H}_{\mathrm{c}}$.

$$
\mathrm{H}_{\mathrm{RFcrit}} \approx \mathrm{H}_{\mathrm{sh}}
$$

Surface Resistance

The power dissipated per unit area of SC in RF regime $P=R_{S} \cdot \frac{H^{2}}{2}$
and

Surface Resistance
$\boldsymbol{R}_{S}=\boldsymbol{R}_{B C S}(\boldsymbol{T})+\boldsymbol{R}_{r e s}$

V. Palmieri, 10th Workshop on RF Superconductivity Proceedings, Tsukuba 2001 (Noguchi)
"New materials for superconducting radiofrequency cavities"

BCS Surface Resistance $R_{B C S}$

If $\mathrm{T}<\mathrm{T}_{\mathrm{c}} / \mathbf{2}$, for dirty limit supeconductors

$$
R_{B C S} \cong \frac{R_{n}}{\sqrt{2}}\left(\frac{\eta \omega}{\pi \Delta}\right)^{\frac{3}{2}} \frac{\sigma_{1}}{\sigma_{n}}=A \sqrt{\rho_{n}} e^{-\frac{\Delta}{K_{B} T}}(1+O(\Delta, \omega, T))
$$

A constant weakly dependent on material
$\omega=$ RF frequency
$\rho_{\mathrm{n}}=$ Normal State conductivity
$\Delta=$ Superconducting gap
$\mathrm{T}_{\mathrm{c}}=$ Transition Temperature
dependence on ρ_{n} and T_{c} represents an immediate criterion for selecting the most favorable candidates for cavities

The higher $\mathrm{Tc}(=0.57 \Delta)$, the smaller the BCS surface resistance
Material with high normal state conductivity and high Tc (high superconducting gap Δ)should be selected

Other materials than niobium

Residual Resistance $R_{\text {res }}$

Temperature independent
Contributions to residual losses:
Intrinsic:
Inhomogeneity, Metallic Inclusions within I, Grain Boundaries, Oxides
Extrinsic:
Trapped Flux during cooling (can be avoided)
Variety of phenomena involved \quad Not one formula predicting $R_{\text {res }}$
From literature
Empirically, $\mathrm{R}_{\text {res }}$ found proportional to at least $\sqrt{ } \rho_{\mathrm{n}}$
For two materials with the same $R_{B C S}$ and different T_{C} and r_{n} the one with the smallest ρ_{n} should have the smallest $R_{\text {res }}$

Metallic behaviour is favored

The gap symmetry is important

- The high Q required by SRF cavities results from the exponentially small BCS surface resistance

s-wave: all conventional BCS uperconductors, ferropnictides

d-wave: high- T_{c} cuprates, heavy fermions, borocarbides ferropnictides

$$
R_{s}=\frac{A \omega^{2}}{T} \exp \left(-\frac{\Delta}{T}\right)+R_{\text {tes }}
$$

- All high- T_{c} cuprates are d-wave SC with nodes in the gap
- Power-law R_{s} and gap suppression by nonmagnetic impurities:

$$
R_{s} \propto T^{\alpha}, \quad \alpha \cong 2-3
$$

> d - wave cuprates, or heavy fermions cannot compete with s-wave LTS at low T

Criteria of choice

THERE IS NO IDEAL SUPERCONDUCTOR FOR CAVITY CHOICE IS BASED ON COMPROMISE

For low RF losses

high T_{C}
Metallic behavior in the normal state, small ρ_{n}

For high gradients

High $\mathrm{H}_{\text {sh }} \mathrm{H}_{\mathrm{c} ;}$ small κ

Possible Choices among Superconducting Materials

Material	Critical Temp. $\mathrm{T}_{\mathrm{c}}[\mathrm{K}]$	Normal-state resistivity ρ_{n} ($\mu \Omega \mathrm{cm}$)	Critical Field $H_{c}(0)$ [T]	Lower Critical field $\mathrm{H}_{\mathrm{c} 1}(\mathrm{o})[\mathrm{T}]$	Upper Critical field $\mathrm{H}_{\mathrm{c} 2}(\mathrm{o})[\mathrm{T}]$	Penetration depth $\lambda(o)[n m]$	Type
Nb	9.22	2	0.2	0.18	0.28	40	11
Pb	7.2		0.08	N/A	N/A	48	1
NbN	17	70	0.23	0.02	15	200	II, B1 comp.
NbTiN	17.5	35		0.03		151	II, B1 comp.
$\mathrm{Nb}_{3} \mathrm{Sn}$	18.3	20	0.54	0.05	30	85	II, A15
$\mathrm{V}_{3} \mathrm{Si}$	17				24.5	179	II, A15
$\mathrm{Mo}_{3} \mathrm{Re}$	15		0.43	0.03	3.5	140	II, A15
MgB ${ }_{2}$	40		0.43	0.03	3.5	140	II- 2 gaps
YBCO	93		1.4	0.01	100	150	d-wave

A new family of superconductors: Oxypnictides ReOMPn
$-\mathrm{M}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni} / \mathrm{Pn}=\mathrm{As}$ or $\mathrm{P} / \mathrm{Re}=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Pr}$
Layered as HTS -superconducting AsFe layers and T_{c} from <10K to 55 K $\Delta^{\text {oxy }}=5-10 \mathrm{meV}>\Delta^{\mathrm{Nb}_{3} \mathrm{Sn}}=3 \mathrm{meV}$
High $\rho_{\mathrm{n}} \sim 1 \mathrm{~m} \Omega \mathrm{~cm} \sim 10 \rho_{\mathrm{n}}{ }^{\text {mgsiz }}$, big $\lambda=180-250$

Nb Compounds

B1 compounds - NaCl structure

Metallic atoms A form an fcc lattice and non-metallic atoms B occupy all the octahedral interstices.

Nb Compounds

Only few Nitrides and Carbides of the IV, V and VI group Transition Metals have critical temperatures higher than Niobium.

A	Sc	Y	La	Ti	Zr	Hf	V	Nb	Ta	Cr	Mo	W	Re
B					3.4	3.1							
C	<1.38	<1.38		3.42	<0.3	<1.20	0.03	12	10.35		14.3	10.0	3.4
N	<1.38	<1.4	1.35	5.49	10.7	8.83	8.5	17.3	6.5	<1.28	5.0	<1.38	
P			<1.68										
Sb		<1.02	<1.02										
\mathbf{S}				2.0			<0.3	1.39					
S	<0.33	1.9	0.87		3.3								
Se	<0.33	2.5	1.02										
Te		2.05	1.48										

* $T_{\mathrm{C}}=3.2 \mathrm{~K}$ was registered in vanadium carbide after implantation of C^{+}ions s

Superconductivity ofTransition Metals, their Alloys and Compounds,
S.V Vonsovsky, Y.A. Izyumov, E.Z. Kurmaev, Springer-Verlag, 1982

NbN phase diagram

Nb Compounds - NbN

The only B1 simple compound that has widely tested for accelerating cavities
Mainly two different techniques have been investigated for this application:
-Thermal diffusion of N into Nb followed by rapid quench cooling
-Reactive Sputtering on metallic or ceramic substrates to Nb cavities Thermal Diffusion:

$$
\begin{gathered}
\text { Bulk Nb (RRR 300) annealed @ } 1550^{\circ} \mathrm{C} \text { for } 2 \mathrm{~h} \\
+ \\
\text { reacted in } \mathrm{N}_{2} \text { vapor(150mbar) @ } 1400^{\circ} \mathrm{C} \text { for } 4 \mathrm{~h} \\
\text { Rs }=1.310^{-6} @ 4.2 \mathrm{~K} \text { and } 40^{-9} @ 1.8 \mathrm{~K} \text { @ } 7.9 \mathrm{GHz} \\
\text { G.Gemme et al., J.Appl.Phys. 77(1), Jan. } 1995 \\
\text { Reactive Sputtering: }
\end{gathered}
$$

Sputtering from high purity Nb target in $\mathrm{Ar}+\mathrm{N}_{2}$ in DC triode magnetron sputtering system Highest Tc for substrate temp. $>500^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{Ar}}=8.10^{-3} \mathrm{mbar}, \mathrm{P}_{\mathrm{N}_{2}}=1.10^{-3} \mathrm{mbar}$

$$
\text { A. Nigro et al., Physica Scripta Vol. 38, 483-485, } 1988
$$

Nb Compounds - NbN

Good SC properties, even if deposited at low temperature
Low secondary emission coefficient
Very stable surface properties

The right $\mathrm{B}_{1}-\mathrm{NbN}$ superconducting phase is the so-called d-phase
$\mathrm{Tc}=17.2 \mathrm{~K}$ for δ-phase (lattice parameter $=4.388 \AA$ A)
T_{C} very sensitive to Nitrogen stoichiometry
. In sputtered films, the δ-phase can be found mixed to some other low T_{C} phases
Even if no grain boundaries are present and δ-phase single crystal is considered the single grain resistivity is not so low.

Anomalously high resistivity of NbN in the normal state, often higher than $100 \mu \Omega \mathrm{~cm}$ due to both metallic and gaseous vacancies randomly distributed in both sublattices

Equiatomic composition is $\mathrm{Nb}_{0.987} \mathrm{~N}_{0.987}$ not $\mathrm{Nb}_{1.0} \mathrm{~N}_{1.0}$
Common problem for B1 compounds

P. Alen, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelae, Thin Solid Films 491:235 (2005).

Polymer Assisted Deposition (PAD) at LANL(Q. Jia et al.)

- A chemical solution technique to deposit films of nearly any metaloxide using aqueous solution by mixing metal precursors with watersoluble polymers
- Polymer plays a critical role in metal-oxide films

Typical chemical solution deposition process flowchart

- Process

NbN grown by Polymer Assisted Deposition

High-quality epitaxial films grown by PAD: an aqueous solution of niobium ion bound to polymer spin coated on substrate, and then annealed at $900^{\circ} \mathrm{C}$ for 5 hours in gaseous ammonium.

LANL: First attempts to deposit on polycrystalline niobium - unsuccessful, working with single-crystal Nb now

Unusually high $\mathrm{RRR}=98.4$ and low $\rho_{20} \approx 0.4 \mu \Omega \mathrm{~cm}$
$\mathrm{T}_{\mathrm{c}} \approx 14 \mathrm{~K}(\gamma-\mathrm{NbN})$

Nb Compounds - NbTiN

$$
\text { Ternary Nitride } \mathrm{Nb}_{1-\mathrm{x}} \mathrm{Ti}_{\mathrm{x}} \mathrm{~N}
$$

Presence of Ti found to reduce significantly the resistivity And facilitate formation of a pure cubic structure.
The d-phase remains thermodynamically stable even at RT.
T_{c} as high as for good quality NbN , for Nb fraction (1-x)>0.5
extreme hardness, excellent adherence on various substrates, very good corrosion and erosion resistance, high-sublimation temperature, and relative inertness

More metallic nature and better surface properties than NbN should result in better RF performance

Nb Compounds - NbTiN

INFN : reactive sputtering with Ar/ \mathbf{N}_{2} in DC Triode Magnetron Sputtering @ $600^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$
$\left(\mathrm{Nb}_{1-\mathrm{x}} \mathrm{Ti}_{\mathrm{x}}\right) \mathrm{N}$ films with 1-x<0.5 present a lower calculated surface impedance, lower critical fields and better surface properties than NbN , especially when deposited at low temperatures.
R. Di Leo et al. J. of Low Temp. Phys, vol 78, n1/2, pp41-50, 1990

Fig. 1. Superconducting critical temperature T_{c} as a function of the titanium composition (x) for the $\left(\mathrm{Nb}_{1-, x} \mathrm{Ti}_{s}\right) \mathrm{N}$ films deposited at $T_{s}=600^{\circ} \mathrm{C}$ (circles) and at $T_{s}=200^{\circ} \mathrm{C}$ (squares).

Fig. 3. Calculated BCS surface impedance $R_{s}(\mathrm{BCS})$ as a function of the titanium composition (x) for the $\left(\mathrm{Nb}_{1-x} \mathrm{Ti}_{x}\right) \mathrm{N}$ films deposited at $T_{s}=600^{\circ} \mathrm{C}$ (circles) and at $T_{s}=200^{\circ} \mathrm{C}$ (squares). The continuous lines correspond to the values of the lines through the data in Figs. 1 and 2.

Nb Compounds - NbTiN

Reactive Magnetron Sputtering:

CEA Saclay:
NbTiN films deposited on 12 cm copper disks by magnetron sputtering and tested in a cylindrical $\mathrm{TE}_{\text {oll }}$ cavity
reached RF field levels of 35 mT low residual surface resistance (<100 $\mathrm{n} \Omega$ at 4 GHz) with a very small BCS resistance 4 cavities deposited but no RF measurement due to film blistering on large area of the cavity. Rs slope significantly decreased when coating with bias ranging from -50 V to -100 V
P. Bosland et al.
S. Cantacuzène et al.

Figure 3 Surface resistance vs temperature for a NbTiN sample, at 4 GHz .

Nb Compounds - NbTiN

CERN:

Samples and six 1.5 GHz Cu cavities coated by reactive cylindrical magnetron sputtering
Best cavity result for thicker film ($4.3 \mu \mathrm{~m}$) and lower deposition temperature ($265^{\circ} \mathrm{C}$)
Rs = 330n Ω @ 4.2K
O_{o} at zero field is higher than the Q -value of Niobium cavities but Eacc limited under $10 \mathrm{MV} / \mathrm{m}$
As for NbN, N stoichiometry critical to obtain the right SC phase
M. Marino, Proceedings of the 8th Workshop on RF Superconductivity, October 1997, Abano Terme (Padua), (Rep) 133/98, vol.IV, p. 1076

Nb Compounds - NbTiN

CERN:

Samples and six 1.5 GHz Cu cavities coated by reactive cylindrical magnetron sputtering
Best cavity result for thicker film ($4.3 \mu \mathrm{~m}$) and lower deposition temperature ($265^{\circ} \mathrm{C}$)
Rs = 330n Ω @ 4.2K
O_{o} at zero field is higher than the Q -value of Niobium cavities but Eacc limited under $10 \mathrm{MV} / \mathrm{m}$
As for NbN, N stoichiometry critical to obtain the right SC phase
M. Marino, Proceedings of the 8th Workshop on RF Superconductivity, October 1997, Abano Terme (Padua), (Rep) 133/98, vol.IV, p. 1076

A15 Compounds - Structure

A atoms = Transition elements of group IV, V or VI B atoms = Non transition or transition elements
$A_{3} B$

B atoms occupy corners and centre of BCC structure A atoms form orthogonal chains bisecting the faces of the BCC unit cell. Linear Chain Integrity is crucial for Tc (long-range order required)

A15 Compounds - Potential candidates for RF Cavities

$\mathrm{Nb}_{3} \mathrm{Sn}, \mathrm{Nb}_{3} \mathrm{Al}, \mathrm{Nb}_{3} \mathrm{Ge}, \mathrm{Nb}_{3} \mathrm{Ga}_{1} \mathrm{~V}_{3} \mathrm{Si}, \mathrm{Mo}_{3} \mathrm{Re}$

- Among the Nb and V based high Tc ($\mathbf{1 5} \mathbf{- 2 0 \mathrm { K } \text {) }) ~}$
- $\mathrm{Nb}_{3} \mathrm{Ga}$ and $\mathrm{Nb}_{3} \mathrm{Ge}$ do not exist as stable bulk materials at 3:1 stoichiometry
- $\mathrm{Nb}_{3} \mathrm{Al}$ exists only at high temperature causing excessive atomic disorder
- Production of above materials need non equilibrium processes
- $\quad \mathrm{V}_{3} \mathrm{Ga}, \mathrm{V}_{3} \mathrm{Si} \& \mathrm{Nb}_{3} \mathrm{Sn}$ are stable bulk material and have high T_{c}
- Another $\mathrm{A}-15$ compound holding promise is $\mathrm{Mo}_{3} \mathrm{Re}(\mathrm{Tc}=15 \mathrm{~K})$

Sharma, International Workshop on Thin Films and New Ideas for Pushing The Limits Of RF Superconductivity, LNL-INFN, Oct. 2006

A15 Compounds - Preparation Methods I

Extreme brittleness so A-15 bulk structure cannot be formed
The A-15 should be produced as thin layer on the interior of the already formed structure

Such a layer need to be only 1 or 2 microns thick $\lambda_{\mathrm{L}}\left(\mathrm{Nb}_{3} \mathrm{Sn}\right)=65 \mathrm{~nm}$
Thin film route ideal

A15 Compounds - Preparation Methods II

Co-Sputtering

- Considerable success achieved in synthesizing difficult materials like $\mathrm{Nb}_{3} \mathbf{G e}$ with highest $\mathrm{Tc}(\sim 23 \mathrm{k})$ or $\mathrm{V}_{3} \mathrm{Si}$
- Typically two constituents are sputtered simultaneously onto a temperature controlled substrate
- Stoichiometry dependent on relative positions of target and substrate (can be manipulated to get perfect stoichiometry)
- Stoichiometry control difficult over large areas like accelerating system and if stoichiometry range for $\mathrm{A}-15$ phase is narrow.

Sputtering

To sputter from a single target of correct stoichiometry (prepared by powder sintering)
Stoichiometry, Substrate Temperature, Deposition Rate, Deposition Thickness Can be varied independently

A15 Compounds - Preparation Methods III

Chemical Vapor Deposition (CVD)

MOCVD (Metal Organic Chemical Vapour Deposition) is a particular case of CVD in which the precursor is a metallorganic compound

Process in which one or more precursors, present in vapor phase, chemically react on an appropriate warm substrate, giving rise to a solid film
Deposition rate and structure of the film depend upon temperature and reagent
concentration
\Rightarrow Uniformity of temperature and flow of gaseous over entire cavity surface may be difficult with complex geometry

Diffusion Reaction

Technique proved successful for magnet conductor application Simple equipment compared to sputtering and CVD

A15 Compounds - $\mathrm{Nb}_{3} \mathrm{Sn}$

Wuppertal, end '8os :
Nb3Sn cavity (1.5 GHz) obtained trough Sn vapour phase diffusion @ $1200^{\circ} \mathrm{C}$

Q vs. $\mathrm{E}_{\text {peak }}$ of the $1^{\text {st }}$ two $\mathrm{Nb}_{3} \mathrm{Sn}$-coated 1.5GHZ single cell cavities in comparison to pure Nb at 4.2 K and 2 K from CEBAF
5-cell 1.5 GHz cavity also coated: $\mathrm{O}_{\mathrm{o}} \sim 10^{9}, \mathrm{E}_{\mathrm{acc}}=7 \mathrm{MV} / \mathrm{m}$ with $\mathrm{Q}=8.10^{8}$
G. Müller et al.,
M. Peiniger \& H. Piel, IEEETrans. On Nucl. Sc. Vol NS-32, nº 5 , Oct. 1985

A15 Compounds - $\mathrm{Nb}_{3} \mathrm{Sn}$ through liquid diffusion

S. Deambrosis, Sharma, International Workshop on Thin Films and New Ideas for Pushing The Limits Of RF Superconductivity, LNL-INFN, Oct. 2006
S. Deambrosis et al., Physica C 441 (2006) 108-113
$\mathrm{Nb}_{3} \mathrm{Sn}$ coatings on Nb by liquid diffusion method at INFN Legnaro
"Hybrid" Process"

- Substrate thermalization ($30 \mathrm{~min}-1 \mathrm{~h}$)
-Dipping (few min - 2 h)
-Sample annealing with Sn vapor for a few hours
-Sample annealing without Sn vapor for a few hours
$\mathrm{Nb}_{3} \mathrm{Sn} 42$ 1: $975^{\circ} \mathrm{C} \times 30^{\prime}+\mathbf{2 h} ; 975^{\circ} \mathrm{C} \times 2 \mathrm{~h}$

Diffusion temperature to be kept above $930^{\circ} \mathrm{C}$ to avoid formation of low Tc phases like $\mathrm{Nb}_{6} \mathrm{Sn}_{5}$ (2.6 K) and NbSn2 (2.1 K)
Diffusion time optimize to obtain desired $\mathrm{Nb}_{3} \mathrm{Sn}$ thickness
Post diffusion heat reaction important to get rid of the outer Sn layer
Post diffusion annealing to have enlarged grains and perfect ordering

A15 Compounds - $\mathrm{Nb}_{3} \mathrm{Sn}$ through liquid diffusion

Figure 7.3. Inductive annealing stand 1-manipulator; 2-vacuum chamber; 3-whole metal valve; 4 -window flange; 5-pneumatic gauge; 6-turbomolecular pump; 7-gauge switcher; 8-inlet of work coil; 9-pump controller; 10-baking control unit; 11induction heater controlling and inverter block; 12-inductor main

Nb3Sn @ Cornell University - Vapor diffusion

Before
 Coating

 tested at Cornell U. by Sam Posen and Matthias Liepe- First ever accelerator cavity made with an alternative superconductor to far outperform Nb at useable gradients

After
 Coating

Nb3Sn @ Jefferson Lab- Vapor diffusion

Figure 4: Test results on the coaxial sample. The data shows that the transition temperature of the coaxial sample was 17.95 K . In the top left corner the surface of the best sample is shown.

Same results with the residual resistance subtracted. Note resistance measurement error is estimated to be about 20%.

B. P. Xiao, G. V. Eremeev, M. J. Kelley, H. L. Phillips, C. E. Reece, LINAC'12

Measurement of coated $\mathrm{Nb}_{3} \mathrm{Sn}$ sample as well as some Nb and thin film niobium samples

A15 Compounds $-\mathrm{Nb}_{3} \mathrm{Sn}$ through Multilayer Coating

Deambrosis, Keppel, LNL/INFN, International Workshop on Thin Films and New Ideas for Pushing The Limits Of RF Superconductivity, LNL-INFN , Oct. 2006 \& SRF 2009

Coat alternate layers of Nb and Sn and subject to diffusion reaction
Preliminary results: a sharp transition and a T_{c} of 17 K has been obtained

Thickness $\mathrm{Nb}=4.5 \times$ Thickness Sn
Annealed after sputtering for 3 hours at $975^{\circ} \mathrm{C}$

Sputtering Target	Voltage (V)	Current (A)	Power (W)
Sn	613	0.18	108
Nb	407	1.99	800

A15 Compounds - $\mathrm{Nb}_{3} \mathrm{Sn}$ through MOCVD process

G. Carta et al. International Workshop on Thin Films and New Ideas for Pushing The Limits Of RF Superconductivity, LNL-INFN , Oct. 2006

MOCVD technique using bis(cyclopentadienil)niobium borohydride, (cyclopentadienil)niobium tetramethyl and tributyltin hydride as Nb and Sn precursors respectively.

Sample characterization by XRD, SEM and RBS analyses: presence of niobium (I, II, V) and tin (II) oxides on the surface.

Problems:

great oxophilic character of Nb

A15 Compounds - $\mathrm{V}_{3} \mathrm{Si}$

S. Deambrosis et al., Physica C 441 (2006) 108-113

Highly ordered compound, RRR~8o achievable, max Tc (17.1K) when stoichiometric composition ($25 \mathrm{at} . \% \mathrm{Si}$)
V_{3} Si layers by silanization of V substrate and Thermal Diffusion V substrate heated to get SiH_{4} decomposition and Silicon diffusion Film grown by silanization with $\mathrm{p}\left(\mathrm{SiH}_{4}\right) \sim 10^{-3-10^{-4}} \mathrm{mbar}$ Annealing in vacuum to get rid of hydrogen

* Diffusion parameters and silane flow rate have been optimized
* Tc $\sim 16 \mathrm{~K}$ is routinely obtained
* RF measurement on 6 GHz V-cavities will be available soon

A15 Compounds - $\mathrm{Mo}_{3} \mathrm{Re}$

$\mathrm{Mo}_{3} \mathrm{Re}$ thin films by DC magnetron deposition: $\mathrm{Mo}_{75} \mathrm{Re}_{25}, \mathrm{Mo}_{60} \mathrm{Re}_{40}$

Solid solution, free of bulk and surface inhomogeneities, low intersticials solubility compared to Nb , low $\mathbf{\kappa}$, high $\mathrm{H}_{\mathrm{c} 1}(500 \mathrm{G})$
Bulk in σ phase, tetragonal low $\mathrm{T}_{\mathrm{c}}(6 \mathrm{~K})$ but T_{c} up to 18 K reported in literature with bcc structure
S.M. Deambrosis et al., Physica C 441(2006) 108-113

* Deposition on Sapphire, Cu and Nb substrates
*Substrate temperature up to $950^{\circ} \mathrm{C}$
*Post-annealing to increase crystallinity and transition sharpness
* $\mathrm{Tc}=12 \mathrm{~K}$ obtained for composition $\mathrm{Mo}_{60} \mathrm{Re}_{40}$

Higher deposition temperature, longer annealing time
\longrightarrow Higher Tc

Fig. 4. A $\mathrm{Mo}_{75} \mathrm{Re}_{25}$ film deposited on Cu transition curve: deposition $T=680^{\circ} \mathrm{C}, T_{\mathrm{c}}=11.18, \Delta T_{\mathrm{c}}=0.08 \mathrm{~K}$.

Magnesium Diboride $\left(\mathrm{MgB}_{2}\right)$

Graphite-type boron layers separated by hexagonal close-packed layers of magnesium

Superconductivity comes from the phonon-mediated Cooper pair production similar to the low-temperature superconductors except for the two-gap nature.

$$
T_{c} \sim 40 \mathrm{~K}
$$

Compared to cuprates:

- Cheaper
- Lower anisotropy
- Larger coherence length
- Transparency of grain boundaries to current flows

attractive for RF applications.

C. Buzea and T. Yamashita, Superconductor Sci. Technol. 14 (2001) R115.

MgB_{2} : Two Energy Gaps

Liu, Mazin and Kortus (2002);
Choi et al, (2002)
R_{5} is dominated by the smaller gap, so MgB_{2} may not be better than $\mathrm{Nb}_{3} \mathrm{Sn}$ because $\Delta_{\pi}{ }^{\mathrm{MgB2}}=2.3 \mathrm{meV}<\Delta^{\mathrm{Nb}_{3} \mathrm{Sn}}=\mathbf{3 . 1} \mathrm{meV}$, but better than Nb ($\Delta^{\mathrm{Nb}}=\mathbf{1 . 5} \mathrm{meV}$)
RF response has shown lower energy gap behavior. This must be compared to $\Delta \approx 1.5 \mathrm{meV}$ for Nb . There is room for better performance than Nb , since the resistivity can also be made quite low (best values are $\leq 1 \mu \Omega \mathrm{~cm}$).

MgB2 - A comparison with conventional SC for RF applications
X. Xi, International SRF Thin Films Workshop, Padua, Italy, 2006

	MgB_{2}	Nb
$\mathrm{T}_{\mathrm{c}}(\mathrm{K})$	39	9.2
$\rho_{o}(\mathrm{~m} \Omega \mathrm{~cm})$	0.1-10	0.05
RRR	3-30	300
$\Delta_{p, s}(\mathrm{meV})$	2,7	1.2
$2 \Delta_{p, s} / K_{B} T_{c}(\mathrm{meV})$	1.6,4	3.9
$\mathrm{X}_{\mathrm{p}, \mathrm{s}}(\mathrm{nm})$	50,12	40
1 (nm)	85	80
$\mathrm{m}_{0} \mathrm{H}_{\mathrm{c} 2}$ (T)	6-50	0.2
$\mathrm{R}_{\mathrm{BCS}}$ @ 4K,500MHz (n , ${ }^{\text {) }}$	$2.5 / 2.3 \times 10^{-5}$	69

MgB_{2}-Thin films growth
 Temperature (${ }^{\mathbf{C}}$)

Z.-K. Liv et al., APL 78(2001) 3678.
evaporation Mg pressure from $\mathrm{MgB}_{2}<$ decomposition curve of $\mathrm{MgB}_{2}<\mathrm{Mg}$ vapor pressure
optimal T for epitaxial growth $\sim T_{\text {melt }} / 2$
For $\mathrm{MgB}_{2,540^{\circ}} \mathrm{C} \rightarrow$ it requires $\mathrm{P}_{\mathrm{Mg}} \sim 11$ Torr
Too high for UHV deposition techniques (PLD, MBE...)
At $\mathrm{P}_{\mathrm{Mg}}=10^{-4-10^{-6}}$ Torr, compatible with MBE, Tsub $\sim 400^{\circ} \mathrm{C}$ MgB_{2} is stable, but no MgB_{2} formation: Mg atoms re-evaporate before reacting with B

Kinetic of Mg is also important

M. Naito and K. Ueda, SUST 17 (2004) R1

At $\mathrm{P}=10^{-6} \mathrm{Torr}$ and $\mathrm{T}>250^{\circ} \mathrm{C}$ no accumulation of Mg will take place on the substrate and the growth of the superconducting phase is very slow due to a large kinetic energy barrier.

At low Mg pressure only extremely low deposition temperatures can be used

$M g B_{2}-$ HPCVD on metal substrates

HPCVD at Temple Uni. (X. Xi et al.)

- Example of epitaxial MgB2 Films by HPCVD: $R R R>80$

MgB_{2} - Microwave Performance on HPCVD Films

High Q value $\mathbf{\sim 1 0 0 0 0}$ at $\mathbf{2 0 K}$, sharp transition in Fo-T curve around the critical temperature, no power dependence in OU-T and Fo-T

R_{s} for $M g B_{2}$

The achieved field with little RF loss is increasing! (Now ~ 800 Oe or higher considering the field enhancement effect at the edges) (Xiaoxing Xi at Temple Uni.)

Test at MIT
scaled to 1.5 GHz

Low-Power Surface Resistance of MgB_{2}

Fits $\quad R_{S}(T)=a\left(\frac{1}{\bar{\beta}}+\left(\frac{15}{8}\right) \frac{1}{\bar{\beta}^{3}}\right)+c \quad, \bar{\beta}=\frac{\Delta_{\pi}(0)}{k_{B} T}, \Delta_{\pi}=2.3 \mathrm{meV}$

MgB2 @ Temple University - cavity coating

In-situ depositions on dummy cavity

- A stainless steel dummy cavity was fabricated to resemble actual cavity.
- MgB_{2} films were deposited, through openings at different locations of the dummy cavity, on c-cut sapphire mounted on the outside.

- The films exhibit residual resistivity between 7.4 and $267 \mu \Omega \mathrm{~cm}$ and RRR between 2 and 6 .
- $\quad T_{c}(0)$ ranges between 36.9 K and 40.2 K .

Different sequences of deposition steps on dummy cavity

$M g B_{2}$ - Reactive Evaporation

SuperconductingTechnologies Inc.

In-situ reactive evaporation @ $550^{\circ} \mathrm{C}$
Compared to Nb :
Higher T_{c}
low resistivity
larger gap
higher critical field
B.H. Moeckly et al., IEEE Trans. Appl. Supercond. 15 (2005) 3308.
T. Tajima et al, Proc. PAC05.
B.H. Moeckly, ONR Superconducting Electronics Program Review Red Bank, NJ, February 8, 2005

Oates, Agassi, and Moeckly, ASC 2006 Proceeding

RF Surface Resistance $\left(R_{s}\right)$ at 10 GHz : LANL measurements compared to the data from other references, and prediction

- Dotted line is the predicted BCS resistance by subtracting the residual resistance (temperature independent)
- R_{s} lower than Nb at 4 K
- Still residual resistance dominates at low temperatures

Generally, $R_{s} \propto f^{2}$ at $T<T_{c} / 2$

- A.T. Findikoglu et al., NSF/DOE Workshop on RF Superconductivity, Bethesda, MD, Aug. 29, 2003.
- B.H. Moeckly et al., IEEE Trans. Appl.

Supercond. 15 (2005) 3308.

R_{s} for MgB_{2}

Test at Cornell with $\mathrm{TE}_{011} \mathrm{Nb}$ cavity at 4.2 K . T. Tajima et al., Proc. PAC2005, P. 4215
R_{s} Power Dependence Test showed little increase up to $\boldsymbol{\sim 1 2 0}$ Oe!

R_{s} for MgB_{2}

Results at MIT in 2006 showed R_{5} comparable to Nb even at 20 K ! and the field at which the Rs start to increase rapidly was higher than Nb !!

Low-Power $\mathrm{R}_{\mathrm{S}}(\mathrm{T}): \mathrm{MgB}_{2}$ and Nb

R_{S} extrapolated to 2.2 GHz by f^{2} for the dielectric-resonator data

R_{S} vs 1/T Semi-log Plot

MgB_{2} - Challenges

Keys to high quality MgB2 thin films:

- High Mg pressure for thermodynamic stability of MgB_{2}
- oxygen-free or reducing environment
- clean Mg and B sources

Challenges

Film properties degrade with exposure to moisture: resistance goes up, T_{c} goes down
Clean cavity surface leads to degradation in water and moisture
... need of a cap layer?
Safety ... procedures for use of diborane

A new superconducting family

Oxypnictide base
$\mathrm{ReOMP}_{\mathrm{n}}$

- $\mathrm{M}=\mathrm{Fe}$, Co , Ni
$-P n=A s$ or P
- Re = La, Nd, Sm, Pr

Layered as HTS -superconducting AsFe layers and T_{c} from <10K to 55 K

Superconductivity occurs on the FeAs layer with magnetic pair-breaking Fe^{2+} ions

Iron-Based Layered Superconductor La $\left[\mathrm{O}_{1-x}{ }^{\boldsymbol{F}} \boldsymbol{x}\right] \mathrm{FeAs}(x=0.05-0.12)$

$$
\text { with } T_{\mathrm{c}}=26 \mathrm{~K}
$$

ERATO-SOPST, IST, Frontier Reserch Cewtr, Toho Dustituts of Technoiog, Mail Box S2-13, Matrials and Structres Laboratoy, Toho Dissints of Technciogs, Mail Box R3-1, and Frontier Research Ceaner, Ioho Institue of Techroiogn, Lail Box S2-l3, 4259 Nagatsuta, Bidori-tha, Yokohiama 226-8503, Japan

Another families: $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{K}_{\mathrm{x}} \mathrm{Fe}_{2} \mathrm{As}_{2}$
Up to a few thousand compounds
Materials usually brittle

Tests in magnetic fields up to 45 T suggest the $\mathrm{H}_{\mathrm{c} 2}$ of LaFeAsO ${ }_{0.89} \mathrm{~F}_{0.11}$ may be $\sim 64 \mathrm{~T}$.
A different La-based material $\left(\mathrm{La}_{0.8} \mathrm{~K}_{0.2} \mathrm{FeAsO}_{0.8} \mathrm{~F}_{0.2}\right)$
tested at 6 K predicts $\mathrm{H}_{\mathrm{c} 2} \sim 122 \mathrm{~T}$.

Can pnictides be useful for TFSRF?

For s-wave members of the pnictide family, one can expect a much lower R_{s} at 2 K because $\Delta_{\text {oxy }}=5-10 \mathrm{meV}>\Delta_{\mathrm{Nb}_{3} \mathrm{Sn}}=3 \mathrm{meV}$
Normal skin effect($\mathrm{I} \ll \lambda$): multiple impurity scattering in the λ-belt:
$\operatorname{Rs} \sim\left(\mu_{0}{ }^{2} \omega^{2} \lambda^{3} \sigma_{n} \Delta / T\right) \exp (-\Delta / T)$
Anomalous skin effect ($\mid \gg \lambda$)in the clean limit: Effective $\sigma_{\text {eff }} \sim e^{2} n \lambda / p_{F}$
High $\rho_{\mathrm{n}} \sim 1 \mathrm{~m} \Omega \mathrm{~cm} \sim 10 \rho_{\mathrm{n}} \mathrm{MgB}_{2}$, big $\lambda=180-250 \mathrm{~nm}$, low $\mathrm{H}_{\mathrm{c} 1} \sim 10 \mathrm{mT}$

R_{s} can be much lower than R_{s} of $\mathrm{Nb}_{3} \mathrm{Sn}$, but TF multilayer coating is necessary High quality epitaxial films have been grownMBE - C.-B. Eom (UW)

SIS Multilayers

Taking advantage of the high -Tc superconductors with much higher H_{c} without being penalized by their lower Hc1...

Higher- $\mathrm{T}_{\mathrm{c}} \mathrm{SC}: \mathrm{NbN}, \mathrm{Nb}_{3} \mathrm{Sn}$, etc

layers

Multilayer coating of SC cavities:
alternating SC and insulating layers with $\mathrm{d}<\lambda$
Higher T_{c} thin layers provide magnetic screening of the Nb SC cavity (bulk or thick film) without vortex penetration

- Strong increase of $\mathrm{H}_{\mathrm{c} 1}$ in films allows using RF fields $>\mathrm{H}_{\mathrm{c}}$ of Nb , but lower than those at which flux penetration in grain boundaries may become a problem

540 mT for $\mathrm{Nb}_{3} \mathrm{Sn}$ or 1 T for pnictides
-high HC1 => no transition, no vortex in the layer -applied field is damped by each layer

- insulating layer prevents Josephson coupling between layers
- applied field, i.e. accelerating field can be increased without vortex nucleation
- Strong reduction of BCS resistance because of using SC layers with higher $\Delta\left(\mathrm{Nb}_{3} \mathrm{Sn}, \mathrm{NbN}\right.$, etc)

$$
=>\text { low } R_{B C S} \text { at low field => higher } Q_{0}
$$

=>Opportunity to move operation from 2 K to 4.2 K

SIS Multilayers - The Benefits

- Multilayer S-I-S-I-S coating could make it possible to take advantage of superconductors with much higher H_{c}, than those for Nb without the penalty of lower $\mathrm{H}_{\mathrm{c} 1}$
- Strong increase of $\mathrm{H}_{\mathrm{c} 1}$ in films allows using rf fields $>\mathrm{H}_{\mathrm{c}}$ of Nb , but lower than those at which flux penetration in grain boundaries may become a problem
- Strong reduction of BCS resistance because of using SC layers with higher $\Delta\left(\mathrm{Nb}_{3} \mathrm{Sn}, \mathrm{NbN}, \ldots\right)$
The significant performance gain may justify the extra cost.
... but ...
Technical challenges, influence of composition on Hc 1 and Hc , influence of the morphology and composition at grain boundaries,

NbN/MgO Multilayer @ CEA Saclay/IPN-Orsay/CNRS Grenoble

$3^{\text {rd }}$ harmonic measurement, coll. INFM Napoli

Local magnetometry

M. Aurino, et al., Journal of Applied Physics, 2005. 98: p. 123901.

Perpendicular field : field distribution can be determined analytically.

- If $r_{\text {sample }}>4 r_{\text {coil }}$: Sample \equiv infinite plate approximation

Applied field : perpendicular, induction (B) // surface (below $\mathrm{B}_{\mathrm{C} 1}$)

- thermal regulation
$1.6 \mathrm{~K}<\mathrm{Tp}^{\circ}<40 \mathrm{~K}$, automated
coil support
(high conductivity copper)

NbN/MgO Multilayer @ CEA Saclay/IPN-Orsay/CNRS Grenoble

 Tutorials

NbN, NbTIN based ML -JLAB/W\&M Collaboration

SIS Multilayer Structures:

\checkmark Nucleation studies of $\mathrm{NbTiN}, \mathrm{NbN}$ on dielectrics like $\mathrm{MgO}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and reciprocately.
\checkmark Creation and characterization of a set of NbTiN , NbN.../insulator/Nb samples by UHV multi-target energetic ion deposition with well-controlled, incremented thickness. The variation of rf field properties with temperature as a function of thickness of the superconducting overlayer will provide a direct test of the Gurevich delayed flux entry model.

Study of growth modes of

 Superconductor/ Insulator \& Insulator/superconductor| Substrates: | Insulator:
 Single crystal Nb
 Poly crystalline Nb
 thick $\mathrm{Nb} / \mathrm{Cu}$ films
 $\mathrm{NbTiN}, \mathrm{NbN}$
 $\mathrm{Nb}_{3} \mathrm{Sn}, \mathrm{V}_{3} \mathrm{Si}, \mathrm{Mo3Re}$ |
| :---: | :---: |
| $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{AlN}$
 according to
 lattice mismatch
 between
 land S materials | |

Multilayer: S/I/Nb and S/I/S/I/.../S/I/Nb

NbN/MgO Multilayer @ College William \& Mary

Multilayer Film

50 nm NbN 15 nm MgO 250 nm Nb

MgO (100)

Temperature (K)

- Further optimization
- Surface modification (ion gun)
- Alternative insulators (AIN)

NbTiN/AIN Multilayer @ Jefferson Lab (DC-MS, HiPIMS)

NbTiN deposited with various thicknesses by reactive DC sputtering at $600^{\circ} \mathrm{C}$ on MgO substrates

NbTiN/MgO (100)			
Thickness	T_{c}	$\Delta \mathrm{T}_{\mathrm{c}}$	a_{o}
$[\mathrm{~nm}]$	$[\mathrm{K}]$	$[\mathrm{K}]$	$[\AA \AA]$
10	12.11	0.91	4.3487
35	16	0.39	
50	15.97	0.16	4.3644
100	16.57	0.21	4.3657
1625	16.95	0.06	4.3618

$\mathrm{NbTiN}, \mathrm{NbN}, \mathrm{Mo}_{3} \mathrm{Re}, \mathrm{V}_{3} \mathrm{Si}$ coatings with Reactive Sputtering and
High Power Pulse Magnetron Sputtering
\& MgO coating with RF sputtering
NbTiN layers have been coated at various temperatures on MgO (100) and AIN ceramic substrates.
The NbTiN films exhibit the cubic d-phase and T_{c} above 16 K for thicknesses larger than 30-50 nm and coating temperatures of $450^{\circ} \mathrm{C}$ or higher.

NbTiN/AIN Multilayer @ Jefferson Lab (DC-MS, HiPIMS)

The SIS structure coated on the ECR Nb/(11-20) $\mathrm{Al}_{2} \mathrm{O}_{3}$ film exhibits a suppressed Tc for the Nb film compared to the measurement prior to the SIS coating. This is most likely due to the Nb oxide reduction and oxygen diffusion during the bake at $600^{\circ} \mathrm{C}$. The NbTiN has a Tc of about 15 K .

NbTiN/AIN Multilayer @ Jefferson Lab (DC-MS, HiPIMS)

The SIS structure coated on the Nb exhibits a T_{c} for the NbTiN of 16 K . RF measurements are in going.
$\mathrm{NbTiN} / \mathrm{AlN} / \mathrm{Nb}$ SIS structure coated at $450^{\circ} \mathrm{C}$ in-situ after a 24 h -bake at $600^{\circ} \mathrm{C}$. Annealing at $450^{\circ} \mathrm{C}$ for 4 hours.

XRD measurements ($\theta-2 \theta$) reveal lattice parameters of respectively $3.301 \AA, 4.041 \AA$ and $4.330 \AA$ for the Nb substrate, AlN and NbTiN layers.

NbTiN/AIN Multilayer @ ANL (Atomic Layer Deposition -ALD)

- Able to synthesize better superconductors than Niobium:
- NbTiN with new ALD chemistry is very pure (<0.05\%)
- NbTiN Tc= 14 K for 60 nm thick film (bulk=16K)
- Multilayer structure:

Aluminum Nitride (AIN) + NbTiN works perfectly:
(15 nm AlN/ 70 nm NbTiN) n n

NbTiN/AIN Multilayer @ ANL (ALD)

MgB2 based Multilayer @ Temple University

Enhancement of $\boldsymbol{H}_{c 1}$ in thin MgB_{2} films

- $\quad 2$ group of samples were studied:
$>$ Single crystalline thin films on $\mathrm{SiC}(0001)$ substrate
> Polycrystalline thin films on amorphous MgO layer on $\operatorname{SiC}(0001)$
- $\quad H_{c 1}(5 \mathrm{~K})$ is enhanced when the film thickness decreases, for films on both single crystal SiC substrate and polycrystalline MgO films.

- $\quad H_{c 1}(5 K) \sim 2000$ Oe in 100 nm-thick MgB_{2} film.

films on bare SiC substrates
- Results show that MgB_{2} thin films with $\boldsymbol{d}>\lambda$ also have enhanced $H_{c 1}$, which makes it possible to use single layer coating to increase $H_{c 1}$ of cavities.
- Films grown on MgO buffer layers with thicknesses of 100-250 nm have the same enhanced $H_{c 1}$ as thin films grown on bare SiC substrates.

Samples: Temple University/ $\mathrm{H}_{\mathrm{c} 1}$ Measurements: William\&Mary

Oxypnictides based Multilayer structures@ ODU

A project on the development of SIS structures based on oxypnictides is starting at
Old Dominion University
(A. Gurevich)
in collaboration with University
Wisconsin-Madison

oxypnictides	
Material	$\mathrm{T}_{\mathrm{c}}(\mathrm{K})$
$\mathrm{LaO}_{0.89} \mathrm{~F}_{0.11} \mathrm{FeAs}$	26[9]
$\mathrm{LaO}_{0.9} \mathrm{~F}_{0.2} \mathrm{FeAs}$	$28.5{ }^{[10]}$
$\mathrm{CeFeAsO} 0.84 \mathrm{~F}_{0.16}$	$41^{[9]}$
$\mathrm{SmFeAsO} \mathrm{O}_{0.9} \mathrm{~F}_{0.1}$	$43^{[9]}$
$\mathrm{La}_{0.5} \mathrm{Y}_{0.5} \mathrm{FeAsO}_{0.6}$	$43.1^{[11]}$
$\mathrm{NdFeAsO}{ }_{0.89} \mathrm{~F}_{0.11}$	$52^{\text {[9] }}$
$\mathrm{PrFeAsO}{ }_{0.89} \mathrm{~F}_{0.11}$	$52^{[12]}$
$\mathrm{GdFeAsO}_{0.85}$	$53 \cdot 5{ }^{[13]}$
SmFeAsO ${ }_{\sim 0.85}$	$55^{[14]}$

CONCLUDING REMARKS

\checkmark Over the years, some attempts have been made to study alternative materials to Nb for applications to SRF cavities.
\checkmark Most of the sample/cavities using alternative materials have been produced by reactive magnetron sputtering or thermal diffusion.
\checkmark Use of Energetic Condensation Techniques like Vacuum Arc Deposition, ECR, or ALD? (production of very dense films with nm-scale roughness...Some trials with Vacuum Arc @ INFN-Rome, non conclusive)
\checkmark The multilayer approach opens the door to further potential improvement for SRF cavities, taking benefits from the advantages of higher T_{c} superconductors without the penalty of lower field onset for vortex penetration and increase the accelerating gradient and Q.
\checkmark Strong reduction of the BCS resistance for superconducting layers with higher Δ (Nb3Sn, MgB2, BKBO, NbN ... s-wave, fully gapped superconductors)
\checkmark New non-magnetic members of the oxypnictide family with $15 \mathrm{~K}<\mathrm{Tc}<55 \mathrm{~K}$ or $\mathrm{BaOo} .6 \mathrm{Ko.4} \mathrm{BiO}_{3}$ with $\mathrm{Tc} \approx 30 \mathrm{~K}$: a possibility to greatly increase Q if TF coating can be developed.

CONCLUDING REMARKS cont.

\checkmark Possibility to move from 2 K to 4.2 K would mean huge cost saving on refrigeration in LINACS
\checkmark Higher $-T_{c} s$-wave materials are often multi-gap superconductors, which do not always have better SRF performance despite higher H_{c} and T_{c}
\checkmark First experimental evidence of field enhancement with $\mathrm{NbN} / \mathrm{MgO} / . . / \mathrm{Nb}$ samples with SQUID measurement with H // sample plane. Field penetration delayed for NbN layered samples compared to Nb sample. Limitation of method: edge effect due to sample size comparable to measurement setup size (c. Antoine et al, CEA Saclay)
\checkmark Many long-standing problems of condensed matter physics and non-equilibrium superconductivity will have to be addressed to understand nonlinear surface resistance under strong rf fields
\checkmark Multi-parameter materials optimization is required to revel the full SRF performance potential.
\checkmark The effort for new materials research for SRF cavities is gaining amplitude. But there is still a lot of work ahead!

