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Example-energy spectrum

Suppose we make a measurement of an energy with a calorimeter. What
can we say about the ‘true’ value ? If we assume a flat prior, we get
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The probability distribution for the true energy 1s a Gaussian centered on
the measured value. However, energy distributions often have a steep
distribution. Suppose the starting distribution was
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one measurement of the energy, resolution 10 GeV, measured 100 GeV
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Power for Energy Spectrum

Suppose what we are trying to extract i1s the power of the underlying
energy distribution. How would we proceed ?

Model M
Parameters A

l Theory

Distributions of
physical quantities j Data processing
9(7 1A, M)

Experiment

l Modeling of experiment
Y

Prediction of
measured quantities B
f(ZIX,9,M) D
Knowledge update

Measured quantities

In this case, assume g(Fo|A\, M) x E; A



Power example

We assume the measured values are related to the true as:
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P(E|Ey) =

2T0

Now apply the ‘law of total probability’
P(EIN) = [ P(E|E)P(Es)dEs

And Bayes’ equation yields  P()\|E) H P(E;|N)Py(N)
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Power example

PO|E)
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Need numerical approach.
1. Either integrate numerically many many times during parameter

SCal.

2. Make a histogram of expected number of entries in measured energy
bins from your event simulation, then reweight the distribution for
different values of A and see how the agreement between expected
and measured varies (Poisson statistics). Note that this does not use

the equation above — in this case n; Number of events
NS o —v;p i in energy bin i
PEN =[] Z — 1\ '
1L v; = 1;(A)  Expectation based
1=

on A



Reweighting a Simulated Distribution

1. Generate events according to a reasonable pdf. In this case,
interested in f(Ey) x E, AL

2. Smear the true energy to account for the apparatus resolution. Can
also apply other constraints, e.g. lower thresholds on energy
measurement, etc.
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Reweighting Simulated Spectrum

Suppose now you wanted to simulate a distribution with a different
power of A. Can give the simulated events a weight

f(Eo|\)

B0 = 5 B gen)

Statistical uncertainty (in the limit of a large number of events) behaves

\/Zw(EOZ-)?

Rule of thumb: avoid large weights (here, 1nitial A should not be too big)
and make sure you have plenty of simulated events !
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Power example

— n=>5
n=6
— n=7/
Nbins Ui T
& YU
P = I =7
1=1 v
[ J o

Assumes no
uncertainty on v,



Comparison of Bayesian Credible Intervals &
Frequentist Confidence Level Intervals

Bayesian interval from cumulative of the Posterior pdf

Neymann Classical Interval — for each value of the parameter, find set of
possible outcomes that contain at least 1-a probability. For the central
interval and Poisson distribution:

sup {ZP <a/2}

nel,. ..
Pn=0lv) >a/2 >n; =0
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Example for v=10/3

Poisson Example

n | P(nlv) | F(nlv) | R | Fr(n|v)
0 | 0.0357 | 0.0357 | 7 0.9468
1 0.1189 0.1546 5 0.8431
2 0.1982 0.3528 2 0.4184
3 0.2202 0.5730 1 0.2202
4 0.1835 0.7565 3 0.6019
5 0.1223 0.8788 4 0.7242
§) 0.0680 | 0.9468 §] 0.9111
7 | 0.0324 | 0.9792 | 8 0.9792
8 0.0135 0.9927 9 0.9927
9 | 0.0050 | 0.9976 | 10 | 0.9976
10 | 0.0017 | 0.9993 | 11 0.9993
11 | 0.0005 0.9998 | 12 0.9998
12 | 0.0001 1.0000 | 13 1.0000




Confidence Level Calculation

We observe n events, and ask which values of v are accepted with
confidence level 1-a.. For 1- 0=0.9, central intervals:

Poisson 90% Confidence Bands




Frequentist Statistics

Poisson distribution in the presence of background, with mean A. Then
we have the same curves as for signal only, but replace v with (v+A).

Poisson 90% Confidence Bands

< 10 * Traditional approach:
T ey
o9 find limit on p, then
3 .
8l subtract A to get limit on
7L V
6,
s e limit for v improves for
Al a fixed n when we add
s background.
27 .
| * can get negative
f o limits ! For example,

0 .
0 2 4 6 8§ 10 12 14 n=0, A>3 gives v<0.
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Feldman-Cousins Confidence Levels

Imagine we have a Poisson process with known background expectation
and unknown signal. If A >3 and n = 0 then the confidence
interval for v 1s empty (or includes unphysical values).

This has led to new definitions for the Confidence Intervals. The most
popular (at least in particle physics) 1s the Feldman-Cousins
construction, where a rank 1s assigned to possible outcomes based on

_ P(alp=2+)
P(nlj2)

Where [i is the value of p that maximizes P(n|u) given the
constraints.



Concrete example: A =3.0 v =0.3

n | P(n|v) [ P(n|p) r Rank | Fr(nlv)
0 0.0357 3.0 0.050 0.717 5 0.7565
1 0.1189 3.0 0.149 0.796 4 0.7208
2 0.1982 3.0 0.224 0.885 3 0.6091
3 0.2202 3.0 0.224 0.983 1 0.2202
4 0.1835 4.0 0.195 0.941 2 0.4037
5 0.1223 5.0 0.175 0.699 6 0.8788
6 0.0680 6.0 0.161 0.422 7 0.9468
7 0.0324 7.0 0.149 0.217 8 0.9792
8 0.0135 8.0 0.140 0.096 9 0.9927
9 0.0050 9.0 0.132 0.038 10 0.9976
10 | 0.0017 | 10.0 0.125 0.014 11 0.9993
11 | 0.0005 | 11.0 0.119 0.004 12 0.9998




Poisson 90% CL Bands a la Feldman-Cousins for A=3.0
10
N
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Comparing Feldman-Cousins with Bayesian Analysis with same
background ) = 3.0 and a flat prior.

'Zz 0 7,'
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Recall: P(v|n,\) =

F(vn,A\) =1—

We will take the smallest interval with 90% credibility. I.e.,

/ P(v|n, \)dv = 0.90
P>C

We find Vdown Vup fulfilling this condition. Numerical integration.



10

Poisson 90% Credibility Intervals for A=3.0
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Comparison Poisson 90% CI vs FC-CL A=3.0

19



p-values and Goodness-of-fit

In general, we can think of quantities that summarize a ‘distance’
between the expectation and the observed. E.g., x? is such a quantity.
It is a test statistic (scalar function of the data, given the model).

T(z| M, N) Test statistic for possible data x given the model M
and parameters A

Create probability density for this quantity:

P(T(x|M,)\)) = P(x| M, )\)j—;



p-values and Goodness-of-fit

A p-value is a value of the cumulative pdf for the test statistic for some
observed value of the data, D.

If the model is correct, we expect a flat distribution for p-values
between (0,1).

dr P(x) B P(x)
dF(T) d/dx [ P(T)dT  d/dz [ P(z)dx

=1

P(F) = P(x)



p-values and Goodness-of-fit

. e p_df
o Definition: 0.06¢
{].{]5;-

Tail area

p=P(T > T(D)|M) 004
0.{]3;-
0.02}
0.01}
T A .... T
0 10 20 30 40 50 60
T(D)
pdf
- Assuming M and before data is taken: | |
p uniform in [0,1] ;
0.8¢ 1—a=0.05
: 0.6}
« Confidence level «:
0.4}
p<1l—a= reject model 02l
e P
0.0 0.2 0.4 0.6 0.8 1.0

Why do we reject the small p-values if all are equally likely ?

SOS
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Comment on reasoning behind p-values

* Need prior knowledge about pdf
alternatives

 Good model: flat p-value
P(p|My) =1

Linear scale

« Bad model: peak at p=0,
sharply falling

P(p|M;) = c;e” P | ¢; > 1

10710}

SOS 23



SOS

Reasoning behind p-values

» Similar prior for all models P(M;) ~ P(Mj;)

- Bayes Theorem: P(M|p) ~ If(mMO)
Z’i:O P(p|Mz‘)
Small;;/ Large p
1
P(Mo|p =~ 0) ~ 74 <1 P(Mylp~1) ~1
1+ 216

Bayes Theorem gives justification to p-values

24



Goodness of Fit

Use % as our test statistic. The probability distribution of 2 is known
analytically. This 1s one of the main reasons why this test statistic 1s so
popular. Strictly only applicable in limited cases (data follow Gaussian
distribution from expectation, resolutions are not parameter dependent, 1f
parameters fitted, then function needs to be linear in parameters, ...).

1 2 _
P(XQ)dX2 _ 2N/2F(N/2)6 X /2(X2)(N/2) 1dX2

['(n)=(n—1)! ninteger >0
(2n)!

['(n+1/2) = ﬁﬁ n integer > 0
"n!

SOS 25



Goodness of Fit

For a given (least-squares) fit to a set of data, a certain x? value will be
obtained. One can then look up in tables whether this value 1s reasonable
by calculating, e.g.,

RS BN
SNBRNO =N D

0.06 C N=25

0.05 ;:
P(x?) o0 E
0.02

0.01 E
0 :l || I L1111 | 1111 I L1l I L1111 ] | | | | | I L1l
0 5 10 15 20 25 30 35 40 45 50
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Warning on p-values

p-values depend critically on how you have chosen the test statistic (or
discrepancy variable). The same data set can have hugely varying p-
values resulting from different choices of the test quantity.

E.g., consider a model where we assume an exponential decay law. We

can define the following probabilities of the data:
N

1, .
Unbinned likelihood P(tlr) = H —€ ti/
i=1
Binned Poisson distribution
Vi V v; = expected events in bin j

P(t|r) = ﬁ

n; = observed events in bin |



pitfalls
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pitfalls

We take the best fit probability as our test statistic. For the unbinned
fit |
i=1

pz/z §dt’l/d75’2...(7'*)_]\[6_21%/7* =1— P(N,N)
>

Regularized incomplete gamma
function

P(s,z) = V(s@) Jy t e dt
’ D(s) [ Ftletdl

Doesn’t depend on the data ! In fact, forlarge N, p =~ 0.5



pitfalls

The p-value from the maximum likelihood is about 0.5 |

The p-value from the binned fitis O

What happened ? The maximum likelihood quantity does not know

anything about the distribution of the events, and the result only
depends on

| N
- N Z
and the p-value only depends on N !

Lesson: make sure your test statistic is sensitive to what you want to
test | The fitting program may give you a high p-value and it could well
be that the fit function looks nothing like the data.



XZ

« Most statistics disrespect order .« *
of data, information wasted g .

 Human brain good for simple g .
problems 5 .

Example: . .
. Series of N=25 datapoints e
« Each Gaussian with mean = 0 '.. RIS ;'-'-.;....?

and variance = 1 ¢

Can we combine information about
order and magnitude of deviation?

SOS 31



Bayesians and Frequentists

Frequentists make statements of the kind:

‘Assuming the model 1s correct, this result will occur in XX% of the
experiments’

The model 1s assumed true, and estimators for the true parameters in the
model are produced from the data.

In the ‘classical’ approach, this 1s then converted to ‘assuming the model,
the bounds [a,b] will contain the true value 1n XX% of experiments
performed’ (confidence levels). Does not imply that the true value 1s 1n
the range [a,b] with probability XX !

The decision on whether to then believe the model/parameters 1s left to
the individual (subjective). The inductive part of the reasoning is left out

of the analysis.
SOS 32



Bayesians and Frequentists
Bayesians make statements of the kind:

‘the degree-of-belief in model A 1s XX (between 0,1)’

Given the new data, the degree-of-belief 1s updated using the frequencies
of possible outcomes 1n the context of the models (full set)

Credible regions are then defined: with XX% credibility, the parameter 1s
in the interval [a,b]. Note — very different from a CL.

The inductive part of the reasoning 1s built in to the analysis, and the
connection between prior beliefs and posterior beliefs is made clear.

Subjective, but the subjective element is made explicit.

SOS 33



Bayesians and Frequentists

In both approaches, work with models and frequencies of outcomes
within the model.

Many elements are the same: modeling; picking the most sensitive
variables to test the theory, ...

There 1s no right and wrong approach, but you have to understand what

you get out of each type of analysis. E.g., don’t confuse confidence
levels with probabilities, p-values with support for a model, ...

SOS 34



BAT — Software package for solving data analysis problems

Code structured on Bayes' formula for parameter estimation

e . = N
. o P(DIX,M)P(X,M
p(x, m|B) = HLA PO, M)

- P(D) J

e The idea behind BAT

« Merge common parts of every Bayesian analysis into a software package
« Provide flexible environment to phrase arbitrary problems

« Provide a set of well tested/tuned numerical algorithms and tools

« C++ based framework (flexible, modular)

o Interfaces to ROOT, Cuba, Minuit, user defined, ..

« can be downloaded from:

SOS



Parameter Estimation

The posterior pdf gives the full probability distribution for all
parameters, including all correlations — no approximations. If interested
in subset of parameters, then marginalize. E.g., for one parameter:

P(\|D, M) = / P(XN D, M)dX,;
Can calculate what you need from the posterior pdf. E.g.,

0y
Mode max {P(\i|D, M)} + probability intervals, ...

Mean of \; < X >= [ P(\i|D, M)\;d);

Median [0 P(\|D, M)dA; = 0.5

Can also perform uncertainty propagation w/o approximations

SOS 36
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The 1dea

Separate the common parts from the rest

« case specific: the model and the data

o common tools: all the rest

USER DEFINED

create model

« read-in data
MODEL . nhormalize
INDEPENDENT | . find mode / fit
(common tools) | . test the fit

marginalize wrt. one or
two parameters
compare models

provide nice output

N\

Define MODEL

. define parameters
. define likelihood
« define priors

Read DATA
. from text file, ROOT tree,
user defined (anything)

37
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Markov Chain Monte Carlo (IMCMC)

generally 1t 1s very difficult to obtain the full posterior PDF
- number of parameters can be large
- different mput data will result in a different posterior

also the visualization of the PDF in more than 3 dimensions is rather
impractical and hard to understand

usually one looks at marginalized posterior wrt. one, two or three
parameters

- aprojection of the posterior onto one (two, three) parameter
- 1Integrating all the other parameters out
- still numerically difficult

the Markov Chain Monte Carlo revolutionized the area of Bayesian
analysis

38



Markov Chain Monte Carlo

Goal of MCMC is to find a chain with (r7;)” ~pdf of interest. Sampling
according to the Markov Chain will then correspond to sampling from
the desired pdf.

Markov Chain —— @ @ @ - X NTE(X)
Random number @ U, 11d from uniform
dlst between (0,1)

Markov Chain Monte Carlo is any method producing an ergodic Markov
chain X, whose stationary distribution in the distribution of interest.

The original algorithm 1s due to Metropolis. Later generalized by
Hastings.
SOS 39



Metropolis algorithm

« In BAT implemented Metropolis algorithm

« Map positive function f{x) by random walk towards higher
probabilities

« Algorithm:

- Start at some randomly chosen x,

- Randomly generate y around x,
- If f{y) 2 fix), set x,, =y

accepted with
probability f(y)/

- If fly) <Ax), set x,, =y with probability f@)/ (i) | ff /7N Slways
- If y notaccepted, stay where you are, i.e., set x, , =x, ) !
)l ; |
- Generate new y , repeat ! : !
y X, y

For each step fill the histogram with x_

For infinite number of steps the distribution in the histogram
converges to f(x)

Exercise: try out the Metropolis
algorithm to generate a Gaussian

distribution from flat rn [0,1]
SOS 40



MCMC: an example

. . . ' log scale
« mapping an arbitrary function: Jinear scale ) ?
" wf number of T
4 2 wof- iterations g
c.g. flz)=atsin’a
_F 1000 ol
o distribution sampled by MCMC 1n this E
case quickly converges towards the we 1] Jk
: e d S B B TR R
underlying distribution = 10 z |
= : = 105;—
. mapping of complicated shapes with of :
multiple minima and maxima “h “E
402 10:;_
o Lorad ety ) 0 b b e b
2 4 6 8 10 12 14 16 18 0
Note: Booock Z ok
« MCMC has to become stationary to o
sample from underlying distribution 1000000 “E
« 1n general the convergence is a non- ‘ |
triVial prOblem 1000:?.” NIV v WY, SUTHLY. SUTIL! PR 1E'..l-.lrllr.l.l.|...||...|.. Lov il

X X

SOS 41



Analysis of Markov Chain

o the full chain(s) can be stored for further analysis and parameter
tuning as ROOT TTree(s)

- allows direct usage of standard ROOT tools for analysis

« Markov Chain contains the complete information about the posterior
(except for the normalization)
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Obtaining marginalized distributions from TTree

root[1l1l] chain0O -> Draw(“par0”) RO0

Entrles 1.4e+07
Mean 0.7578
RMS 0.297

N
NN

III|III|IIIIIII|III|III|III|III|III|III|III|II

p(pOldata)

18
1.6
14

) 2

0.8
0.6
0.4
0.2

-2

-3

o
IIIIIIIIIlIIIIIIIII|IIII|IIII|IIII|IIII

4 Ll Lol ol Ll Ll Lol !
10 102 10 ° °

-
w
-
.
-
o
o
FN
]
w
N
'
-
-
N
w
£

_10°
iteration p0
. h01_0
root[12] chainO -> Draw(“parO:parl”) Entes  1.4e+07
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RMSy 001212
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Using the Markov Chain

Once you have the chain, 1t 1s stmple to calculate quantities of interest.
Chain is {A, A2, ), 1=1,N
E.g., pdf for one parameter: just plot ~ {A;}, joint {X;, Agx}.

N

- 1
Expectation value of a function E[f(\)| = N Z S TTR Wy
i=1

Probability distribution of your function: just plot {f(A1,...,A\n)},

1

SOS



