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Logical Basis

Model building and making predictions from models follows deductive
reasoning:

Given A=»B  (major premise)
Given B=»C (major premise)
Then, given A you can conclude that Cis true

etc.

Everything is clear, we can make frequency distributions of possible
outcomes within the model, etc. This is math, so it is correct ...



Logical Basis

However, in physics what we want to know is the validity of the model
given the data. i.e., logic of the form:

Given A=»C with some ‘probability’
Measure C, what can we say about A ?

Well, maybe A;=>C, A,=>C, ...
We can only disprove (C not possible in A, then A invalid).

We are only capable of expressing a ‘degree of belief’ in A. And since
we can never say anything is true, the question is —is it good enough ?
Are we willing to bet on A providing the right answer to the next
qguestion ? Under what odds ?



Logical basis

Instead of truth, we consider knowledge
Knowledge = justified true belief

Justification comes from the data.

Start with some knowledge or maybe plain belief
Build a model

Make some predictions

Do the experiment

Data analysis gives updated knowledge (belief in possible parameter
values)



Which probability ?

Data analysis is based on building a ‘probability’ for the data. But is this
well defined ?

Imagine we flip a coin 10 times, and get the following result:
THTHHTHTTH

We now repeat the process with and get
TTTTTTTTTT

Which outcome has higher probability ?



Take a model where H, T are equally likely. Then, probability of the
seguence is

outcome 1

And
outcome 2

Something seem wrong with this result ?

Given a fair coin, we could also calculate the chance of getting n times
H:



And we find the following result:

p
1.2—10
10-2—10
45.2—10
120-2—10
210 -2~ 10
252 .2—10
210 -2~ 10
120 -2~ 10
45 .2~ 10
10 -2~ 10
10 1.2-10
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There are typically an infinite number of
choices you can make for the ‘probability of the
data’ or likelihood.

If someone claims to have an optimal
definition, ask them ‘based on what criterion ?’
There is no one best answer !

Choosing a probability of your data is a critical component of the
analysis process. Get the most out of your data !



Mathematical Definitions

Consider a set, S, the sample space, which can be divided into subsets.

Probability 1s a real-valued function defined by the
Axioms of Probability (Kolmogorov):

1. For every subset Ain S, P(A)=0.
% 2. For disjoint subsets
ANB =9,
P(AU B) = P(A) + P(B)

3. P(S)=1



Mathematical Definitions

Definition of conditional probability:

P(A|B) = P(A(B)
S P(B)

o

Since P(A(1B) = P(B()A), Bayes' Theorem follows

P(BJA)P(A)

P(AIB) = == 5




Law of Total Probability

P(B) = EP(B|A1')P(A1)

for any subset B and for disjoint A. such that U, 4, =S

Combining with Bayes' Theorem gives

P(BI4)P(4)
. P(B|4,)P(4,)

P(A|B) =

If you want to make a statement about how much ‘probability’ to assign to A, there is only one
way — Bayes’ Theorem.



Why isn’t everyone a Bayesian ?

My suspicion: it 1s because most people do not understand the frequentist
approach. Frequentist statements and Bayesian statements are thought to

be about the same logical concept, and the frequentist statement does not
require a prior, so ...

A. L. Read, Presentation of search results: the CL¢ technique, J. Phys. G: Nucl. Part. Phys. 28
(2002) 2693-2704.

nearly all physicists tend to misinterpret frequentist results as statements
about the theory given the data.

Frequentist statements are not statements about the model — only about
the data in the context of the model. This is not what we wanted to know
... At least not the ultimate statement.
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Why isn’t everyone a Bayesian ?

G. D’ Agostini, Probably a discovery: Bad mathematics means rough scientific communication,
arXiv:1112.3620v2 [physics.data-an]
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This 1s nonsense !

SOS

Quoting a Discovery article:

It 1s what 1s known as a " "three-
sigma event,” and this refers to the
statistical certainty of a given result.
In this case, this result has a 99.7
percent chance of being correct (and
a 0.3 percent chance of being
wrong).”

| — P(D|Ho) = P(H;|D)
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The Higgs announcement

Gemeinsame Presseerklarung des

Komitee fiir Elementarteilchenphysik KET
Forschungsschwerpunkt ATLAS (BMBF-FSP 101 ATLAS)
Forschungsschwerpunkt CMS (BMBF-FSP 102 CMYS)
Deutsches Elektronen-Synchrotron DESY
Max-Planck-Institut fiir Physik

Helmholtz-Allianz ,,Physik an der Teraskala“

Der Nachweis eines neuen Teilchens wird in der Teilchenphysik klassischerweise auf zwei Stufen
gestellt: Die Messungen, die die Wissenschaftler an thren Experimenten durchfiihren, beruhen auf
Statistik. Sie geben daher zu jedem ihrer Ergebnisse die Sicherheit als so genannte Signifikanz

an. Die Einheit, die sie daflir verwenden ist sigma, dargestellt durch den griechischen Buchstaben
o. Die erste Stufe eines Teilchenfunds (,,evidence) ist erreicht, wenn sich das Signal des
Teilchens mit einer Deutlichkeit zeigt, dass die Physiker mit 99,75 Prozent Sicherheit von seiner
Echtheit ausgehen. Dies entspricht einer Signifikanz von 36. Von einer ,,Entdeckung* und damit

der zweiten Stufe sprechen die Forscher bei einer Signifikanz von 5o, das entspricht einer
Fehlerwahrscheinlichkeit von 0,000057%.

Translation - Probability of error 1s 0,000057%

SOS 14



What happened

equated — P(D|Hy) = P(H1|D)
Probability of observing the Probability that the Higgs

data or something more
extreme given the background
only hypothesis

exists

This is logical nonsense ...

Who’s fault is this confusion ? I would say — physicists should know
better ! In the Bayesian approach, we state our prior assumptions

S%gld show how they lead to the conclusions. .



Poisson Distribution

A Poisson distribution applies when we do not know the number of trials
(it 1s a large number), but we know that there 1s a fixed probability of
‘success’ per trial, and the trials occur independently of each other.

Alternatively — a continuous time process with a constant rate will
produce a Poisson distributed number of events 1n a fixed time interval.

High energy physics example: beams collide at a high frequency (10
MHz, say), and the chance of a ‘good event’ i1s very small. The resulting
number of events in a fixed time will follow a Poisson distribution. A
single trial 1s one crossing of the beams.

Nuclear physics example: a large sample of radioactive atoms will
produce a Poisson distributed number of events in a fixed time interval
(assuming a ™>>T)

SOS 16



Poisson Distribution

The Poisson distribution can be derived from the Binomial distribution in
the limit when N —o and p —0, but Np fixed and finite. Then

P(r|N,p) — P(n|v)

The expected number of events 1s calculated from a rate, or from a
luminosity and cross section or some other way

v=R-T or v=L -0 or...



Poisson Distribution - derivation

P(n|N,p) =

N

n(] _ N—n
n!(N—n)!p (1=p)
v N " ( V)N_”

P(n|N, 2 =
N, N = N )i v

P(n|v) = Poisson Distribution

SOS



Poisson Example

Quantity used 1n likelihood
/ analysis

P(nly)

SoooooSSS
Sr=EINWRARUNTIAANINR\O

6
A) .
8 4 Probability of
10 12 14 \ the data used
16,9 2

in confidence
o 0 level setting



P(nlv)=

v'ie

n!

v=0.1
e l
0 5

v=1.0
1|
0 10

v=5.0
ln””HHHH”n&

0 10
v=20.
il

0 25

Poisson Distribution-cont.

Notes:

* As v increases, the
distribution becomes more
symmetric

» Approximately Gaussian for
large v

20



Bayesian Data Analysis-Poisson Distribution

Typical examples — counting experiments, failure rates, cross sections,...

_ Pp)Rv) S RW)
P = T Pl Po)de ~ [ 2 Ry

This 1s our master formula. Result in general will depend on choice of
prior. In general, we need to go straight to the numerical solution.

Why not — computing 1s cheap today. Avoid the simplifications and
approximations. You can do the full calculation given the right tool.

SOS 21



Poisson - cont.

This 1s a lecture, so you expect some formulae.

If we assume a flat prior starting at 0 and extending up to some
maximum of v much larger than n.

R =
(VIn) = =ne= = e
fO n! PO(V)dV 0 n! dv

Vmax n_, —v o0
/ Y v i/ v'e Vdy = in! =1
0 n! n! Jo n!

—UV,,N
P(vin) = S vV =n

SOS
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Poisson - cont.

The expectation value:

> < yteV 1)!
<V>:/ P(V‘H)Vduz/ T 5 dy = (n+1) =n + 1
0 0

n! n!

The variance:

0? = / P(v|n)(v— < v >)*dv |
0
= / - VQdV—<V>2/ 7€ dv
0 n! 0 n!
(n +2)!




Poisson - cont.

Note: n=0 <v>=] ???

From prior, expect < v >

/ P()(V)VdV:/ Yy
0 0 Vmax

B [ VZ ]Vma:c
2(Vma:c) 0

LAN@CME

2

What happened ? n=0 1s a measurement !

P(v|0) ="

SOS 24



Poisson — cont.

P(vin)

08 | n=0
Some examples

04

0.2 |

Comments: 04 5 10 15 20
1%

If you decide to quote the mode as your nominal result, you would use

v'=n. For large enough n, the 68% probability region is then
approximately

n—+v/n—n-+n

SOS



Poisson - cont.

The cumulative distribution function:

v m ,—v
Ve
F(vin) = / ' dv'
0 n!
1 m_—v v g m—1_—v'dv’
= — |=v"e " |f+n | v e
n' 0



Poisson — Examples

Assume measure zero counts.

With flat prior assumption Plviln=0) = e"
Flvjn=0) = 1—¢e"
For a 95% credibility upper L
limit : |
095 — 1 - e_y 0.8 -
v o~ J [
0.6 — Jx=5 x=10
04 I
0.2
0 0 5 20

SOS
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Poisson — cont.

What if we cannot (or do not want to) take a flat prior

Suppose we can model the prior belief as P,(v) = %e-wlo

e’ —e
Now Bayes tellsus P(v I x =0) = — POIWARLV)  _ 10 _U o1 V)10

1 10
PO IWV)P,(v)dv — e 10 gy,
{ OWPRmdv [

<V >= f%e’m/lovdv =091

0

P(v=2.7)=95%,1.e., v<2.7 with 95% probability



Exercises

paper and pencil

a) Find the distribution of the waiting time for the k' event in a process with a constant
rate A.

b) For a Poisson with mean 1.5, what 1s the probability to see 6 or more events ? What is
the probability to see exactly 0 events ?

c) Prove that for a Poisson distribution

n*=|v|=v|l—-1



Poisson Distribution-cont.

We often have to deal with a superposition of two Poisson processes —
the signal and the background, which are indistinguishable in the
experiment. Usually we know the background expectations and want to
know the probability of a signal in addition.

Example, the signal for large extra dimensions may be the observation of
events where momentum balance 1s (apparently) strongly violated.
However this can be mimicked by neutrinos, energy leakage from the
detector, etc.



Use the subscripts B for background, s for signal,

and assume n events are observed

P(n) = iP(ns lv)P(n—n_lvy)

4%
ng Binomial formula with P = >
o VBtV E /\ V. + Vg
'(n n)l
n ng n—ng
— e_(VB +Vy) V T Vp E Vs Vg
'(n n)'v+v V. +V,
n
_e—(v3+v )(V TV )

=1 by normalization



The Bayesian Way

e Hu™
p=XA+v Py ="21

n!
Assuming that the background 1s perfectly known:

P(nlv, A\) Po(v)
[ P(n|v,\)Py(v)dv

P(v|n,\) =

assuming a flat Py (v) and integrating by parts.

Oty
'Zz 0 z'

P(v|n,\) =

The cumulative pdfis  |F'(v|n,A) =1 —

SOS
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f(v)

0.15

0.1

0.05

0.75

0.5
0.25

SOS

Poisson — cont.

Comment:

For n=0, P(v|n, A)=e™V. It
does not matter how much
background you have, you

get the same probability
distribution for the signal.




Example

Want to test a new theory — Large Extra Dimensions. If this hypothesis
is correct, we expect events with certain characteristics in (let’s say)
proton-proton collisions. We design an experiment to look for this
process.

There will also be indistinguishable events from ‘known’ physics. The
analysis has been designed to reduce these, but there will be some
background left.

Background expectation: A=ogpy L -agpy

Signal expectation: v=orgDp L -arLEp

Have a nearly infinite number of collisions of protons with very small
probability to generate an event per bunch crossing: Poisson process



Example

Probabilistic model:

—A\n
e "A\"'B
P A\) =
sl = =
e~ Vymns
P —
(ns|v) ol
e Fu™
P(n|A,v) =



Example

Compare two situations:
1) no knowledge on the background

2) Separate data help us constrain the background

Suppose we measure n=7 events, what can we say ?



n=7 Poisson

B AN RO
A T A T s O

(RORARELRR LRI LR LR CALLRA SRR
R R R B ———
AR AR RR IR IR IR ———

A A A A A A A A AP RIRARR
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With Background knowledge - Bayes

P(n|lv, \)P(\)P(v)

P(v,\n) =
(v Aln) [ P(n|v, VPN P(v)drdv
“ATI A+ )" 1 -3
_ € v P()\) = e X
P(n\)\, V) — ol ( ) \/%0')\

Py(v) = constant

We solve this numerically (here with the BAT package) https://www.mpp.mpg.de/bat/

To get a probability distribution for the physics parameter, we
marginalize

P(v|n) = /P(V,)\\n)d)\



SOS

p(lambdaldata)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

n=7 Constrained Background

smallest 99.7% interval(s)
smallest 95.5% interval(s)
smallest 68.3% interval(s)
global mode

il

mean and standard deviation
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10
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14

16

18 20
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SOS

lambda

20

15

10

n=7 Constrained Background

rll

smallest 99.7% interval(s)
smallest 95.5% interval(s)
smallest 68.3% interval(s)
global mode

mean and standard deviation
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p(nuldata)

SOS

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

n=7 Constrained Background

smallest 99.7% interval(s)
smallest 95.5% interval(s)
smallest 68.3% interval(s)
global mode

mean and standard deviation

4 6 8 10 12 14 16 18 20
nu
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Example: Double Beta Decay

One of the outstanding questions in Particle Physics is whether the neutrino is its own
antiparticle (so-called Majorana particle).

The only practical way which has been found to search for the Majorana nature of neutrinos
(particle same as antiparticle) is double beta decay (because of the light mass of neutrinos,
helicity flip is very unlikely unless the neutrinos have very low energy).

For us, what is interesting is that we are looking for a peak at a well-defined energy in a sparse
spectrum.

A. Caldwell, K. Kréninger, Phys. Rev. D 74 (2006) 092003
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Discovery or not ?
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Analyze energy spectrum and decide if there is evidence for a signal. Counting experiment —
Poisson statistics.
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GERDA 13-03
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Error Bars for Distributions of Numbers of Events
Ritu Aggarwal, Allen Caldwell

European Physical Journal Plus
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Do not put error bars on event
counts !
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Exercises

1. For the following data set:

1000 s
2 In 2000 s 250

a) Plot the probability distribution for the background rate from Data set 1 only

b) Analyze the two data sets simultaneously; plot the 2D probability density for the
background and signal rates.

c) Find the 68% central credibility interval for the decay rate. If your sample had a mass of
one gram, and the isotope in the sample has an atomic mass of m,=110 gm/mole, what
is the lifetime of the isotope (value with uncertainty) ?
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