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and population

SAMPLE POPULATION
Finite size Potentially infinite

Selected through a size

random process .
eg. Result of a eg. All possible

measurement results

Characterizing the sample, the population and the
drawing procedure

— Probability theory (today’s lecture)

Using the sample to estimate the characteristics of
the population

— Statistical inference (tomorrow’s lecture)



A.L Random process

A random process (« measurement » or

« experiment ») is a process whose outcome cannot
. be predicted with certainty.

/-1t will be described by :
Universe: Q = set of all possible outcomes.
Event : logical condition on an outcome. It can

2 subsets. Q

‘ either be true or false; an event splits the universe in

A

(&)

An event # will be identified by the subset A for
4 which #is true.




Probability

A prObabi"ty function P is defined by . (Kolmogorov, 1933)
P :{Events} — [0:1]
A — P(A)

: satisfying :

P(AorB)=P(A) +P(B) ifAandB=0

Interpretation of this number :

- Frequentist approach : if we repeat the random
‘ process a great number of times n, and count the number of
- times the outcome satisfy event A, n, then the ratio :

. n
lim —2 =P(A) gefines a probability

n—>+o N

- Bayesian interpretation : a probability is a measure of
the credibility associated to the event.




Simple logic

Event « not A » is associated
with the complement A.

P(A) = 1-P(A)
P(9)=1-P(Q)=0

Event « A and B »

Event« AorB»
P(A or B) =P(A)+P(B)-P(A and B)




J.L Conditional probability

If an event B is known to be true, one can restrain the
universe to Q’=B and define a new probability function
-on this universe, the conditional probability.

P(A|B) = « probability of A given B »

Q
B =B

AetB AlB

P(A andB)

P(AIB) =0 5




| . Incompatibility and
e k Indpendance

Two incompatible events cannot be true
simultaneously, then : P(Aand B) =0

‘ P(A or B) = P(A)+P(B)

. Two events are independent, if the realization
of one is not linked in any way to the

‘ realization of the other :
P(AIB)=P(A) and P(B|A) = P(B)

P(A and B) = P(A).P(B)




I.L Bayes theorem

The definition of conditional probability leads to :
P(A and B) = P(A|B).P(B) = P(B|A).P(A)
Hence relating P(A|B) to P(B|A) by the Bayes theorem :

P(A|B).P(B)

PBIA) ===

Or, using a partition {B;} :
P(A|B).P(B,) _ P(A|B)).P(B))
PE 1A= ZP(Aand B,) ZP(AlB) P(B,)

This theorem wull play a major role in Bayesnan inference :
given data and a set of models, it translates into :

P(model. | data) = P(data |model,).P(model;)
> P(data|model,).P(model,)




SO

MO I.L Application of Bayes

100 dices in a box :
70 are equiprobable (A) 30 have a probability 1/3 to get 6 (B)
You pick one dice, throw it until you reach 6 and count the

_number of try. Repeating the process thrice, you get 2, 4 and 1.

N

What'’s the probability that the dice is equilibrated ?

n-1 2n—1

e 5
For one throw : P(N|A)=(1-pg)""pg = & P(n|B)= 3"
Combining several throw: (for one dice, throws are independent)

ny+ny+nz-3
P(n,andn, andn; |A) =P(n,|A)P(n, | A)P(n, |A) = >

2n1 +n2 +n3 _3

6n1 +n2 +n3

P(n,andn, andn; |B)=

3n1+n2+n3
P(n,,n,,n; |A)P(A)
P(nh nz, r‘3 | B)P(B) + P(n1: n2a r‘3 I A)P(A)

5“1 +n2 +n3 —3

P(A|n1,n2,n3):

x0.7

o 2n1+n2+n3_3 5n1+n2+n3_3 = 24

x0.3+ x0.7 37><0.3+27><0.7

n,+N,+N n,+N,+N
E; 1T T3 (5 112 T3

n,+ny+n
6 1 3

~0.42




2 J.L Random variable

When the outcome of the random process is a number

(real or integer), we associate to the random process
-a random variable X.

| Each realization of the process leads to a particular
result: X=x. xis arealization of X.

For a discrete variable :
Probability law : p(x) = P(X=x)
For a real variable : P(X=x)=0,

Cumulative density function : F(x) = P(X<x)
- dF = F(x+dx)-F(x) = P(X < x+dx) - P(X < x)
' = P(X < x or x < X < x+dx) - P(X < x)
=P(X < x) + P(x <X < x+dx) - P(X < x)
= P(x < X < x+dx) = f(x)dx

dF
Probability density function (pdf) : f(x)= dx




$Os J.L Density function

Probability density function

X

Tf(x)dx —P(Q)=1

Note : discrete variables can
also be described by a
probability density function
using Dirac distributions:

f(x)=>_p(i)3(i-x)
2. p(i)="

Cumulative density function
FOOT
1

By construction :

F(-0)=P(@)=0
F(+0)=P(Q)=1

F(a)= Tf(x)dx

=00

P(a <X <b) =F(b)-F(a) = Tf(x)dx




$Os J.L Change of variable

Probability density function of Y = @(X)
For ¢ bijective
@ increasing : X<x < Y<y
P(X <x)=F(x) =P(Y <y) =F,(Y) =F,(p(x)) = f,(y) =
¢ decreasing : X<x < Y>y
P(X <x)=F(x)=P(Y >y)=1-F,(Y) =1-F,(p(x)) = f,(y) = -

f(x) _ flo'(y)
o' (97'(y))

If ¢ not bijective : split into several bijective parts o,
0 __ 5 flo (v)
o' S lata "))

Very useful for Monte-Carlo : if X is uniformly distributed
between 0 and 1 then Y=F-1(X) has F for cumulative density

dF(x)  f(x)
dy ¢'(x)
dF(x)  f(x)
dy -¢'(x)

in both case :|fy(Y) =




0§ 1.\ Multidimensional PDF (1)

Random variables can be generalized to random vectors :
X=(X,, Xy, X.)

the probability density function becomes :

f(x)dx =f(x,,X,,...,x )dx.dx,...dx_
‘ =P(x, <X, <x,+dx,andx, <X, <X, +dx,...
L.andx, <X o <x +dx )

b d
and P(a<X<bandc<Y<d)=jdxjdyf(x,y)

~ Marginal density : probability of only one of the component
fy(x)dx =P(x <X <x+dxand-oo <Y <+x0)= j(f(x,y)dx)dy

= fe(x) = [ f(x,y)dy




SO s I.L Multidimensional PDF (2)

For a fixed value of Y=y,:
f(x]yo)dx = « Probability of x<X<x+dx knowing that Y=y0 »
is , a conditional density for X. It is proportional to f(x,y), so

fixly)cfx,y)  [f(x|y)dx =1

~f(x|y) = T%Y) _T(x.y)

of the form x<X<x+dx are independent from y<Y<y+dy
f(xly)=fx(x) and f(y|x)=fy(y) hence f(x,y)=fy(x).fy(y)

~Translated in term of pdf’s, Bayes’ theorem becomes:

[fx,y)ax  fo(y)
The two random variables X and Y are independent if all events

X IWF(Y) _ FXIWFAY) o deraec
)[Ry (DY o Seriarica

inference

f(ly [x) =




e A Sample PDF

A sample is obtained from a random drawing within a
population, described by a probability density function.

We’re going to discuss how to characterize, independently
from one another:

- a population
- a sample

To this end, it is useful, to consider a sample as a finite set
from which one can randomly draw elements, with
equipropability

We can the associate to this process a probability density, the
empirical density or sample density

fsample (X) — % Z 6()( - ')

This density will be useful to translate properties of
distribution to a finite sample.




‘.L Characterizing a distribution

How to reduce a distribution/sample to a finite
number of values ?

. < Measure of location:
Reducing the distribution to one central value
— Result
“* Measure of dispersion:
Spread of the distribution around the central value
— Uncertainty/Error
= Higher order measure of shape

“ Frequency table/histogram (for a finite sample)




l.l Measure of Iocation

“' population sample (size n)
I_/ N~ |I ||||IIII

Mean value : Sum (integral) of all possible values welghted by
the probability of occurrence:

p=x=[ xf(x)dx

Median : Value that split the distribution in 2 equuprobable parts
X, <X, <. <X,

med(x)
[ f(dx = jmed(x)f(x) Xz » 0ddn

"2 med(x
)= {1(xn/2+x1+n/2)’ evenn

Mode : The most probable value = maximum of pdf

df o*f
dx dx? <0 ?

x=mod(x) x=mod(x)




$Os l.l Measure of dispersion

> population «— sample (size n)
A TR

- Standard deviation (o) and variance (v= 02) : Mean value of the

squared deviation to the mean : 1>
‘ v=c52=j(x—p)2f(x)dx V:GZZEZ(Xi_M)Z

Koenig’s theorem : =1

62 = j x2F(x)dx + 2 j f(x)dx — 2u j xf(x)dx

‘ Gzzxz_uzzxz_iz ‘

A

. Interquartile difference : generalize the median by splitting the
distribution in 4 :

a A as +a0 1 med(x) =q,
f(x)dx =] f(x)dx=| f(x)dx=| f(x)dx=—
LOO ( ) J-"'11 ( ) 'L2 ( ) Ls ( ) 4 0= q3 — q1

19 "Others...




$Os J.L Bienaymeé-Chebyshev

Consider the interval : A=]-co,p-afU]u+a,+oo[

A: _ 2 . 2
Then forxe (—xau] >1:>(—xauj f(x) > f(x)

- (";“j f(x)dx > [ f(x)dx

: JA a
‘ - w(";“j f(x)dx > [ f(x)
J—o0 a A

::—2>P(JX—u‘>a)

‘ Finally Bienaymé-Chebyshev’s inequality PQX - u\ < ao ) > 1—%

It gives a bound on the confidence level of the interval ptac

a 2 3 4 5
Chebyshev’s bound 0.938 0.96
Normal distribution 0.99996 | 0.9999994




$O0s J.L Multidimensional case

A random vector (X,Y) can be treated as 2 separate variables
mean and variance for each variable : gy gy Oy Oy
‘Doesn’t take into account correlations between the variables

JJ.ll|.||||.||||.||||.||||.||||‘|| _J‘.jJJJ']JJJ‘IIII.IIII.IIIIi -+

Generalized measure of dispersion : Covariance of X and Y

) Cov(X,Y) = [[(x— 1)y - 1y (X, y)dxdy = po,oy = 11y —Hiyhly

L COVOLY) =Y (6, -V iy

Cov(X,Y)

GxOy

Uncorrelated : p=0

Correlation :p =

Independent i:) Uncorrelated

1 [] . ] . [] [] [] _ﬂ
only quantify linear correlation



S 1.\ Regression

Measure of location:
+ apoint: (ky, Hy)
. « acurve: line closest to the points — linear regression
. Minimizing the dispersion between the curve « y=ax+b » and

 the distribution : )
‘ w(a,b) = [[(y - ax —b)Zf(x,y)dxdy(= D (yi-ax —b)zj

W _o- j x(y —ax —b)f(x,y)dxdy =
oa .

w _
L ob .
a(ox —ty) +biy = poyay +piyky -
= Hy *

0= [[(y—ax-b)f(x,y)dxdy s

Fully correlated
Fully anti-correlated p=-1
Then Y = aX+b




$Os . 1.\ Decorrelation

Covariance matrix for n variables X;:
2
SF P126102

2
5, =Cov(X,X )=z =| P20z Oz

p1n010n pZnGZGn
For uncorrelated variables  is diagonal

Real and symmetric matrix: can de diagonalized — One can
define n new uncorrelated variables Y, 'Q:'

s> 0 - 0 *
2
N - 0 o2 = 0| _gig y-_Bx

0o 0 .. o%

o’;2 are the eigenvalues of Z, )

B contains the orthonormal eigenvectors. WMW
The Y, are the principal components. Sorted for the Iargerhf'g' o

the smaller o’ they allow dimensional reduction




Moments

For any function g(x), the expectation of g is :
E[g(X)] = jg(x)f(x)dxlt’s the mean value of g

Moments p, are the expectation of Xk.
Ot moment : yy=1 (pdf normalization)
1stmoment: p,=p (mean)

X’ = X-p, is a central variable
2nd central moment : p’,=02 (variance)

‘ Characteristic function : ¢(t) =E[e™]= If(x)ei"tdx =FT'[f]
From Taylor expansion: ¢(t) = J'Z (l::() f(x)dx = z ('t)
i d“e

k
dt t—ol CF : useful tool for demonstrations

W, =— Pdf entirely defined by its moments




$O0s I.L Skewness and kurtosis

Reduced variable : X’ = (X-u)lo =X’/ o
Measure of asymmetry :

3rd reduced moment : u’’; =B, =7y, : skewness
74=0 for symmetric distribution. Then mean = median

Measure of shape :
4t reduced moment : p”’, =f,=vy, + 3 : kurtosis
For the normal distribution B, =3 and y, =0

Generalized Koenig’s theorem

W, =(-1)"(1- n)u1+2k,( _k),( P TH
j T




SO s ‘.kSkewness and kurtosis (2)

| .

— '1,»'1={], "fz=ﬂ (normale)

v, <0
v>0

— >0
— -’f.z-::'f <0
-,r==-1.ﬁ (uniforme)
?2-:-1.2




$Os J.L Discrete distributions

Binomial distribution: randomly choosing K objects within a finite
set of n, with a fixed drawing probability of p

~Variable 'K
-Parameters :n,p

! ? n =10

X

Dens ta le probabilite gx)
o N

n!
Law :P(k;n,p) = P (1-p)™
Mean :np
Variance : np(1-p) ——— | | —

k!(n—k)!

Poisson distribution : limit of the binomial when n—+,p —0,np=A
Counting events with fixed probability per time/space unit.

Variable K

. Parameters :A e
Law :P(k;)\) = ek?
Mean : A '
Variance " A

A=6.5

)
[=]
0.06
0.041
0.021 |
A |
) 2 10 12 14
X




$Os J.L Real distributions

Uniform distribution : equiprobability over a finite range [a,b]
Parameters :a,b .

Law f(xab)—%lfa<x<b

Mean . n = (a+b)/2

'Varlance v=c-=(b-a)° /12 I S
Normal distribution (Gaussian) : limit of many processes

Parameters : u, © x)?
Law . f(X; p,0) = e 2

ov/2n

‘ Chi-square distribution : sum of the square
of n normal reduced v[arlablj

' Variable o gl pata.
Parameters :n
Law

22 Mean 'n Variance
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/.

p petit, k << n
np =\

Loi binomiale

Convergence

Loi de Poisson
P(k;)) = £
L=\ o=\

p(k;n,p) = Ckp*(1 — p)»*

p=mp o= Jnp(i—p)

Loi du Khi?
c21
f(zin) = 2*121211(—%)6

w=n o=1+2n

£

Loi normale

_z_
f(@p,0) = Fme 2

p=p o=o

2




SOS ‘.‘ Multidimensional Pdfs

Multinomial distribution : randomly choosing K, , K, ,... K, objects
within a finite set of n, with a fixed drawing probability for each
category p4, P2,-.- Ps With ZK;=n and 2p;=1

Parameters :n, pq, Pos.-- Ps

: - n!
Law P(k;n,p) =

k,'k,!.. k!

k

ki K
p11p22 .. .pss

Mean . M=NP;
Variance : 0;%=np,(1-p;) Cov(K;,K))=-np;p;

Rem : variables are not independent. The binomial, correspond to s=2, but has
only one independent variable.

Multinormal distribution :

‘ Parameters : py, X 1
s Cf(o. — 1 o =)' 27 (%-10)
- Law Sf(x;,2) = e
271‘2‘
_(Xi—lli)2
20i2

- .o 1
if uncorrelated : f(x;{i,Z) =] | e
0,27
===} Uncorrelated

Independent p—




$O0s 1.\ Sum of random variables

The sum of several random vgriable is a new random variable S

s=YX,
i=1

. Assuming the mean and variance of each variable exists,
! Meanvalueof S:

‘ Hs = j(zn:xijf(x1,.,,,xn)dx1,,,dxn = Zn:jxifxi (x,)dx. =

The mean is an additive quantity
Variance of S :

n 2
G2 :I[in —uxij f(Xq5..., %, )dX,...dX,

- ;:cs)z(i + ZZiZki COV(Xi,xj)

N

For uncorrelated variables, the variance is additive
-> used for error combinations




$O0s 1.\ Sum of random variables

Probability density function of S : fg(s)
Using the characteristic function :

ps(t) = [fs(s)e™ds = [ f, (X)e">" dx
For independent variables
‘ @s(t) = ijxk (xk)eiukdxk = 1_[§0xi (t)

The characteristic function factorizes.
Finally the pdf is the Fourier transform of the cf, so:

) fo =f, *fy *...x

' The pdfs of the sum is a convolution.
Sum of Normal variables —» Normal
Sum of Poisson variables (A, and A,) — Poisson, A=A, + A,
Sum of Khi-2 variables (n, and n,) —» Khi-2, n=n,+n,




308 ‘.LSum of iIndependent variables

Weak law of large numbers

Sample of size n = realization of n independent variables, with
the same distribution (mean y, variance 2. 3
X

| : L. S
| The sample mean is a realizationof M===—
n n

Mean value of M : py,=p Variance of M : 0% =0?/n

Central-Limit theorem

n independent random variables of mean p; and variance o2
1 Xi— 1,
\/H Z G;

1 The pdfs of C converge to a reduced normal distribution :

Sum of the reduced variables : C=

fC (C) N>t

The sum of many random fluctuation is normally distributed



$O0s I.L Central limit theorem

Naive demonstration:

For each X, : X’’, has mean 0 and variance 1. So its characteristic
~functioniis : 2
| Py: (t) = 1—?+0(t )

Hence the characteristic function of C :

?c(t) = @y (%j

For nlarge:

limec(t) = I|m£1—tnj =e 2 =FT'[f,]

N—+00 nN—-+0

This is a naive demonstration, because we assumed that the
moments were defined.

For CLT, only mean and variance are required (much more
complex)




—(X1+X2+X3+X4+X5)*racine(5)

t theorem
\

1Mmi

m—(X1+X2+X3)*racine(3)

\

©
N
s
-
Q
@)
|
.‘

School Of Statistics




308 ‘.L Dispersion and uncertainty

36

Any measure (or combination of measure) is a realization of a
random variable.

- Measured value : 6
- True value : B

Uncertainty = quantifying the difference between 8 and 6, :

— measure of dispersion
We will postulate : A8 = acy, Absolute error, always positive

Usually one differentiate
- Statistical error : due to the measurement Pdf.

- Systematic errors or bias — fixed but unknown deviation
(equipment, assumptions,...)

Systematic errors can be seen as statistical error in a set a
similar experiences.



$Os I.L Error sources

Observation error : A, : Position error : A,

Q
»
o s
* " e
o Y
Q LY
g » .
n

Scaling error: Ag

0 = 0y+5,+05+0p

Each 9, is a realization of a random variable : mean 0 (negligible)
and variance o;2. For uncorrelated error sources :

Ao =004

Ag =005 Ay = (000y)* = (002 T 032 + GPZ) =Ag+Ag+A;

Ap = 00p
Choice of a ?
If many sources, from central-limit - normal distribution
a=1 gives (approximately) a 68% confidence interval

37 a=2 gives 95% CL (and at least 75% from Bienaymé-Chebyshev)




School Of Staristics

SOg -
l.l Error propagation

. df
FOO o= —

Measure : xtAx
I Compute : f(x) > Af?

‘ Assuming small errors,

using Taylor expansion :

2 3 4
F(x+ Ax) = F(x)+ I x4 - 9T ppe L1 AT (o, 1 AT e
dx 2 dx 6 dx 24 dx

df 1d°F [ 1d°f id“f

f(x — AX) :f(x)—an+§dx2 AX "5 ad AX® + 22 dx?

N

Ax*

3
= Af :1\f(x+Ax)—f(x—Ax)\ LY B Z Ax®
2 dx 6 dx




505’ ,  Error propagation

z =f(x_,y of _df(X,y.n)
Measure : xtAx, ytAy,... " " m) ox | dx

Compute : f(x,y,...) -> Af? Curve z=f(x,y, ), fixed
Idea : treat the effect of

each variable as separate
error sources

Af= ﬁAx,Ayf :‘ﬁ‘Ay
oy

X

OX

Then

2 2 2 _ ﬁ i ﬂ
‘ AFS=A 7+ A f +pxyAfoyf—(8xij J{@y y

of af
Af2 =S| —Ax.

Z‘[ax, j z‘,p” X, 8xj
uncorrelated correlated anticorrelated

2
AfzzZ(ﬁAx] AfzﬁAx+ ?‘Ay Af = ﬁAx—g‘Ay
y y

OX OX OX
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