Probability and Statistics Basic concepts I (from a physicist point of view)

Benoit CLEMENT – Université J. Fourier / LPSC

bclement@lpsc.in2p3.fr

Bibliography

Kendall's Advanced theory of statistics, Hodder Arnold Pub.

- volume 1 : Distribution theory, A. Stuart et K. Ord
- volume 2a : Classical Inference and and the Linear Model, A. Stuart, K. Ord, S. Arnold
 - volume 2b : Bayesian inference, A. O'Hagan, J. Forster
- The Review of Particle Physics, K. Nakamura et al., J. Phys. G 37, 075021 (2010) (+Booklet)
- Data Analysis: A Bayesian Tutorial, D. Sivia and J. Skilling, Oxford Science Publication
- Statistical Data Analysis, Glen Cowan, Oxford Science Publication
- Analyse statistique des données expérimentales, K. Protassov, EDP sciences
- Probabilités, analyse des données et statistiques, G. Saporta, Technip
- 2 Analyse de données en sciences expérimentales, B.C., Dunod

Sample and population

SAMPLE Finite size Selected through a random process eg. Result of a measurement POPULATION Potentially infinite size

eg. All possible results

Characterizing the sample, the population and the drawing procedure

→ **Probability theory** (today's lecture)

Using the sample to estimate the characteristics of the population

→ Statistical inference (tomorrow's lecture)

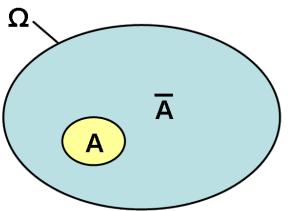
A random process (« measurement » or « experiment ») is a process whose outcome cannot be predicted with certainty.

It will be described by :

Universe: Ω = set of all possible **outcomes**.

Event : logical condition on an outcome. It can either be true or false; an event splits the universe in

2 subsets.



An event *A* will be identified by the subset **A** for which *A* is true.

Probability

A probability function P is defined by : (Kolmogorov, 1933) P : {Events} \rightarrow [0:1] A \rightarrow P(A)

satisfying :

 $P(\Omega)=1$ $P(A \text{ or } B) = P(A) + P(B) \text{ if } A \text{ and } B = \emptyset$

Interpretation of this number :

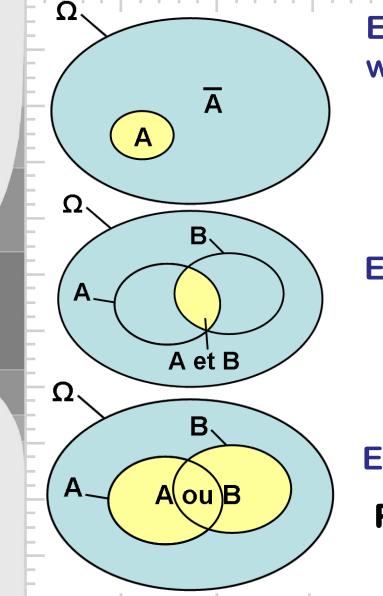
- Frequentist approach : if we repeat the random process a great number of times n, and count the number of times the outcome satisfy event A, n_A then the ratio :

 $\lim_{n \to +\infty} \frac{n_A}{n} = P(A) \text{ defines a probability}$

- **Bayesian interpretation** : a probability is a measure of the credibility associated to the event.

6

Simple logic



Event « not A » is associated with the complement \overline{A} .

$$P(\overline{A}) = 1-P(A)$$
$$P(\emptyset) = 1-P(\Omega) = 0$$

Event « A and B »

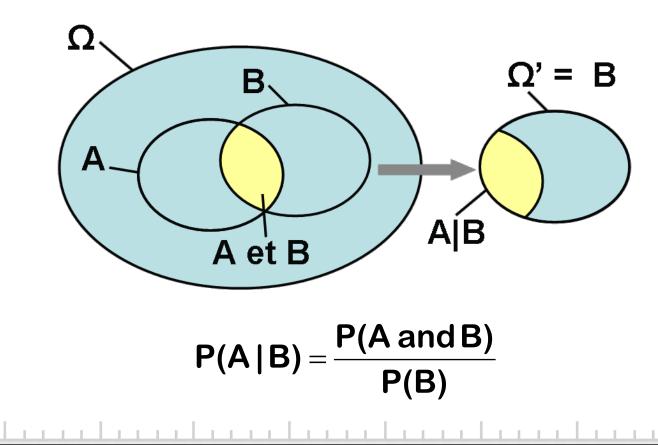
Event « A or B »

P(A or B) = P(A)+P(B)-P(A and B)

Conditional probability

If an event **B** is **known to be true**, one can restrain the universe to Ω '=B and define a new probability function on this universe, the **conditional probability**.

P(A|B) = « probability of A given B »



7

Incompatibility and Indpendance

Two **incompatible** events cannot be true simultaneously, then : P(A and B) = 0

P(A or B) = P(A)+P(B)

Two events are **independent**, if the realization of one is not linked in any way to the realization of the other :

P(A|B)=P(A) and P(B|A)=P(B)

P(A and B) = P(A).P(B)

Bayes theorem

The definition of conditional probability leads to :

P(A and B) = P(A|B).P(B) = P(B|A).P(A)

Hence relating P(A|B) to P(B|A) by the **Bayes theorem :**

$$\mathsf{P}(\mathsf{B} | \mathsf{A}) = \frac{\mathsf{P}(\mathsf{A} | \mathsf{B}).\mathsf{P}(\mathsf{B})}{\mathsf{P}(\mathsf{A})}$$

Or, using a partition {**B**_i} :

$$P(B_i | A) = \frac{P(A | B_i) \cdot P(B_i)}{\sum_{i} P(A \text{ and } B_i)} = \frac{P(A | B_i) \cdot P(B_i)}{\sum_{i} P(A | B_i) \cdot P(B_i)}$$

This theorem will play a major role in Bayesian inference : given **data** and a **set of models**, it translates into :

 $P(model_i | data) = \frac{P(data | model_i).P(model_i)}{\sum_{i} P(data | model_i).P(model_i)}$

10

Application of Bayes

100 dices in a box : 70 are equiprobable (A) 30 have a probability 1/3 to get 6 (B) You pick one dice, throw it until you reach 6 and count the number of try. Repeating the process thrice, you get 2, 4 and 1. What's the probability that the dice is equilibrated? For one throw : $P(n|A) = (1-p_6)^{n-1}p_6 = \frac{5^{n-1}}{6^n}$ $P(n|B) = \frac{2^{n-1}}{3^n}$ Combining several throw: (for one dice, throws are independent) $P(n_{1} \text{ and } n_{2} \text{ and } n_{3} | A) = P(n_{1} | A)P(n_{2} | A)P(n_{3} | A) = \frac{5^{n_{1}+n_{2}+n_{3}-3}}{6^{n_{1}+n_{2}+n_{3}}}$ $P(n_{1} \text{ and } n_{2} \text{ and } n_{3} | B) = \frac{2^{n_{1}+n_{2}+n_{3}-3}}{3^{n_{1}+n_{2}+n_{3}}}$ $P(A | n_1, n_2, n_3) = \frac{P(n_1, n_2, n_3 | A)P(A)}{P(n_1, n_2, n_3 | B)P(B) + P(n_1, n_2, n_3 | A)P(A)}$ $=\frac{\frac{5^{n_1+n_2+n_3-3}}{6^{n_1+n_2+n_3}}\times 0.7}{\frac{2^{n_1+n_2+n_3-3}}{3^{n_1+n_2+n_3}}\times 0.3+\frac{5^{n_1+n_2+n_3-3}}{6^{n_1+n_2+n_3}}\times 0.7}=\frac{\frac{5^4}{6^7}\times 0.7}{\frac{2^4}{3^7}\times 0.3+\frac{5^4}{6^7}\times 0.7}\approx 0.42$

Random variable

When the outcome of the random process is a **number** (real or integer), we associate to the random process a **random variable X**.

Each realization of the process leads to a particular result : X=x. x is a realization of X.

For a discrete variable :

Probability law : p(x) = P(X=x)

For a **real variable** : P(X=x)=0,

Cumulative density function : F(x) = P(X<x)

```
dF = F(x+dx)-F(x) = P(X < x+dx) - P(X < x)
```

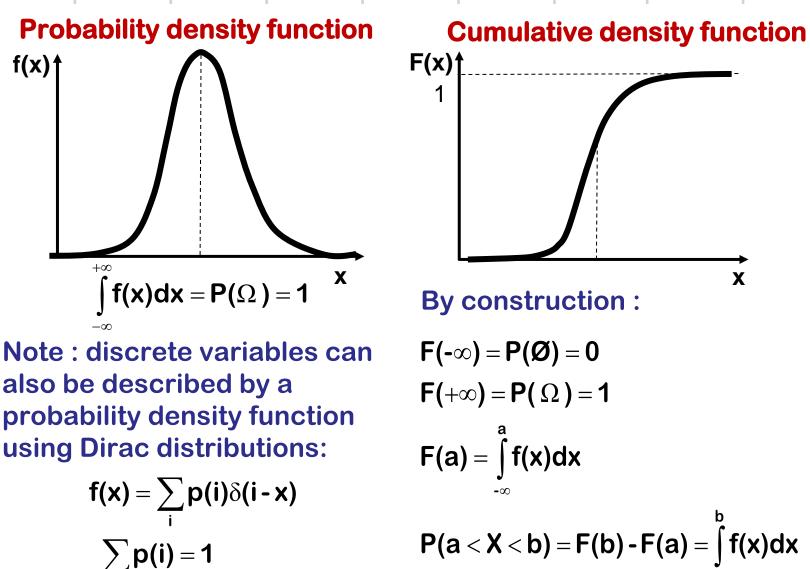
= P(X < x or x < X < x+dx) - P(X < x)

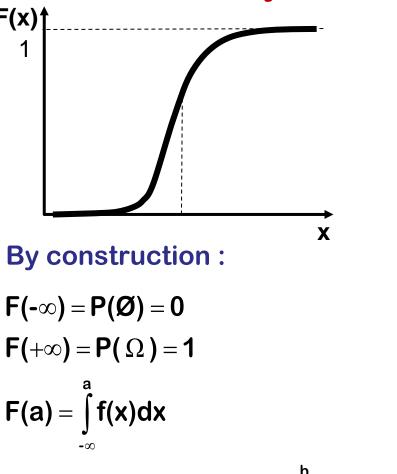
$$= P(X < x) + P(x < X < x+dx) - P(X < x)$$

= P(x < X < x+dx) = f(x)dx

Probability density function (pdf): $f(x) = \frac{dF}{dx}$

Density function





Change of variable

Probability density function of Y = \varphi(X) For φ bijective • ϕ increasing : X<x \Leftrightarrow Y<y $\mathsf{P}(\mathsf{X} < \mathsf{x}) = \mathsf{F}_{\mathsf{X}}(\mathsf{x}) = \mathsf{P}(\mathsf{Y} < \mathsf{y}) = \mathsf{F}_{\mathsf{Y}}(\mathsf{Y}) = \mathsf{F}_{\mathsf{Y}}(\varphi(\mathsf{x})) \Longrightarrow \mathsf{f}_{\mathsf{Y}}(\mathsf{y}) = \frac{\mathsf{d}\mathsf{F}(\mathsf{x})}{\mathsf{d}\mathsf{y}} = \frac{\mathsf{t}(\mathsf{x})}{\varphi'(\mathsf{x})}$ •φ decreasing : X<x ⇔ Y>y $\mathsf{P}(\mathsf{X} < \mathsf{x}) = \mathsf{F}_{\mathsf{X}}(\mathsf{x}) = \mathsf{P}(\mathsf{Y} > \mathsf{y}) = 1 - \mathsf{F}_{\mathsf{Y}}(\mathsf{Y}) = 1 - \mathsf{F}_{\mathsf{Y}}(\varphi(\mathsf{x})) \Longrightarrow \mathsf{f}_{\mathsf{Y}}(\mathsf{y}) = -\frac{\mathsf{d}\mathsf{F}(\mathsf{x})}{\mathsf{d}\mathsf{y}} = \frac{\mathsf{f}(\mathsf{x})}{-\varphi'(\mathsf{x})}$ in both case: $\mathbf{f}_{Y}(\mathbf{y}) = \frac{\mathbf{f}(\mathbf{x})}{|\varphi'(\mathbf{x})|} = \frac{\mathbf{f}(\varphi^{-1}(\mathbf{y}))}{|\varphi'(\varphi^{-1}(\mathbf{y}))|}$ If φ not bijective : split into several bijective parts φ_i $\mathbf{f}_{\mathbf{Y}}(\mathbf{y}) = \sum_{\mathbf{i}} \frac{\mathbf{f}(\mathbf{x})}{|\varphi_{\mathbf{i}}'(\mathbf{x})|} = \sum_{\mathbf{i}} \frac{\mathbf{f}(\varphi_{\mathbf{i}}^{-1}(\mathbf{y}))}{|\varphi_{\mathbf{i}}'(\varphi_{\mathbf{i}}^{-1}(\mathbf{y}))|}$ Very useful for Monte-Carlo : if X is uniformly distributed between 0 and 1 then Y=F⁻¹(X) has F for cumulative density

Multidimensional PDF (1)

Random variables can be generalized to random vectors :

 $\vec{\mathbf{X}} = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n)$

the probability density function becomes : $f(\vec{x})d\vec{x} = f(x_1, x_2, \dots, x_n)dx_1dx_2 \dots dx_n$ $= P(x_1 < X_1 < x_1 + dx_1 \text{ and } x_2 < X_2 < x_2 + dx_2 \dots$ $\dots \text{ and } x_n < X_n < x_n + dx_n)$ and $P(a < X < b \text{ and } c < Y < d) = \int_a^b dx \int_c^d dy f(x, y)$

Marginal density : probability of only one of the component $f_{x}(x)dx = P(x < X < x + dx \text{ and } - \infty < Y < +\infty) = \int (f(x, y)dx)dy$ $\Rightarrow f_{x}(x) = \int f(x, y)dy$

Multidimensional PDF (2)

For a fixed value of $Y=y_0$:

f(x|y₀)dx = « Probability of x<X<x+dx knowing that Y=y0 » is , a **conditional density** for X. It is proportional to f(x,y), so

$$f(x \mid y) \propto f(x, y) \qquad \int f(x \mid y) dx = f(x, y)$$
$$\Rightarrow f(x \mid y) = \frac{f(x, y)}{\int f(x, y) dx} = \frac{f(x, y)}{f_{Y}(y)}$$

The two random variables X and Y are **independent** if all events of the form x<X<x+dx are independent from y<Y<y+dy f(x|y)=f_x(x) and f(y|x)=f_y(y) hence f(x,y)= f_x(x).f_y(y)

Translated in term of pdf's, Bayes' theorem becomes:

$$f(y \mid x) = \frac{f(x \mid y)f_{Y}(y)}{f_{X}(x)} = \frac{f(x \mid y)f_{Y}(y)}{\int f(x \mid y)f_{Y}(y)dy} = \frac{f(x \mid y)f_{Y}(y)}{\int f(x \mid y)f_{Y}(y)dy}$$

See A.Caldwell's lecture for detailed use of this formula for statistical inference

Sample PDF

A sample is obtained from a random drawing within a population, described by a probability density function.

We're going to discuss how to **characterize**, **independently from one another**:

- a population
- a **sample**

To this end, it is useful, to consider a sample as a finite set from which one can randomly draw elements, with equipropability

We can the associate to this process a probability density, the **empirical density** or **sample density**

$$f_{sample}(x) = \frac{1}{n} \sum_{i} \delta(x-i)$$

This density will be useful to translate properties of distribution to a finite sample.

Characterizing a distribution

How to reduce a distribution/sample to a finite number of values ?

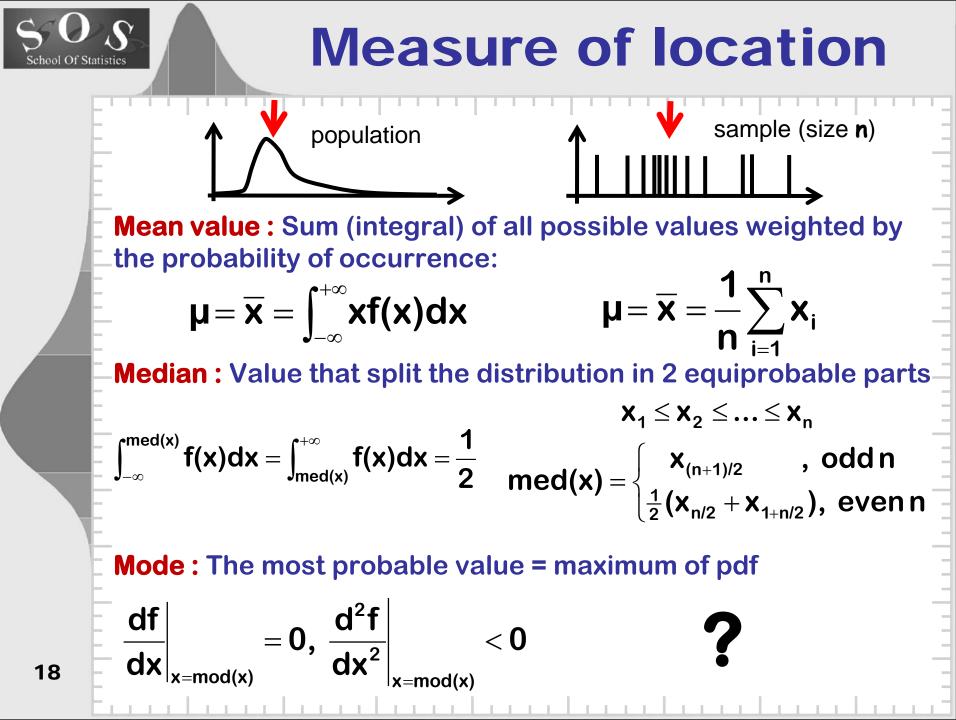
Measure of location:

Reducing the distribution to one central value \rightarrow Result

Measure of dispersion:

- Spread of the distribution around the central value \rightarrow Uncertainty/Error
- Higher order measure of shape

Frequency table/histogram (for a finite sample)



Measure of dispersion

Standard deviation (σ) and variance (v= σ^2): Mean value of the squared deviation to the mean :

$$\mathbf{v} = \sigma^2 = \int (\mathbf{x} - \mu)^2 \mathbf{f}(\mathbf{x}) d\mathbf{x}$$
 $\mathbf{v} = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)^2$

Koenig's theorem :

19

$$\sigma^{2} = \int \mathbf{x}^{2} \mathbf{f}(\mathbf{x}) d\mathbf{x} + \mu^{2} \int \mathbf{f}(\mathbf{x}) d\mathbf{x} - 2\mu \int \mathbf{x} \mathbf{f}(\mathbf{x}) d\mathbf{x}$$
$$\sigma^{2} = \overline{\mathbf{x}^{2}} - \mu^{2} = \overline{\mathbf{x}^{2}} - \overline{\mathbf{x}}^{2}$$

Interquartile difference : generalize the median by splitting the distribution in 4 :

$$\int_{-\infty}^{q_1} f(x) dx = \int_{q_1}^{q_2} f(x) dx = \int_{q_2}^{q_3} f(x) dx = \int_{q_3}^{+\infty} f(x) dx = \frac{1}{4} \qquad \begin{array}{c} med(x) = q_2 \\ \delta = q_3 - q_1 \end{array}$$
Others...

Bienaymé-Chebyshev

Consider the interval : Δ =]- ∞ , μ -a[\cup] μ +a,+ ∞ [

Then for **x**∈Δ :

$$\left(\frac{\mathbf{x}-\mu}{\mathbf{a}}\right)^2 > \mathbf{1} \Rightarrow \left(\frac{\mathbf{x}-\mu}{\mathbf{a}}\right)^2 \mathbf{f}(\mathbf{x}) > \mathbf{f}(\mathbf{x})$$

$$\Rightarrow \int_{\Delta} \left(\frac{\mathbf{x}-\mu}{\mathbf{a}}\right)^2 \mathbf{f}(\mathbf{x}) d\mathbf{x} > \int_{\Delta} \mathbf{f}(\mathbf{x}) d\mathbf{x}$$

$$\Rightarrow \int_{-\infty}^{+\infty} \left(\frac{\mathbf{x}-\mu}{\mathbf{a}}\right)^2 \mathbf{f}(\mathbf{x}) d\mathbf{x} > \int_{\Delta} \mathbf{f}(\mathbf{x})$$

$$\Rightarrow \frac{\sigma^2}{\mathbf{a}^2} > \mathbf{P} \left(|\mathbf{X}-\mu| > \mathbf{a}\right)$$

Finally Bienaymé-Chebyshev's inequality

$$\mathsf{P}(|\mathsf{X}-\mu|\leq \mathbf{a}\sigma)>\mathbf{1}-\frac{\mathbf{1}}{\mathbf{a}^2}$$

It gives a bound on the confidence level of the interval $\mu \pm a\sigma$

_	а	1	2	3	4	5
_	Chebyshev's bound	0	0.75	0.889	0.938	0.96
_	Normal distribution	0.683	0.954	0.997	0.99996	0.9999994
17						

21

Multidimensional case

A random vector (X,Y) can be treated as 2 separate variables mean and variance for each variable : $\mu_{x} \mu_{y} \sigma_{x} \sigma_{y}$ **Doesn't take into account correlations between the variables** o=-0.5 ρ=0.9 o=0 Generalized measure of dispersion : Covariance of X and Y $Cov(X,Y) = \iint (x - \mu_x)(y - \mu_y)f(x,y)dxdy = \rho\sigma_x\sigma_y = \mu_{xy} - \mu_x\mu_y$ $\mathbf{Cov}(\mathbf{X},\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mu_{\mathbf{X}}) (\mathbf{y}_i - \mu_{\mathbf{y}})$ **Correlation** : $\rho = \frac{\text{Cov}(X, Y)}{\sigma_x \sigma_y}$ **Uncorrelated** : $\rho=0$ Independent Uncorrelated only quantify linear correlation

Regression

20

Measure of location:

 $\boldsymbol{b} = \boldsymbol{\mu}_{\boldsymbol{Y}} - \boldsymbol{\rho} \frac{\boldsymbol{\sigma}_{\boldsymbol{Y}}}{\boldsymbol{\mu}_{\boldsymbol{X}}} \boldsymbol{\mu}_{\boldsymbol{X}}$

 $\sigma_{\textbf{X}}$

 σ_{x}

• a point : (μ_X, μ_Y)

• a curve : line closest to the points \rightarrow linear regression Minimizing the dispersion between the curve « y=ax+b » and the distribution :

$$w(a,b) = \iint (y - ax - b)^2 f(x,y) dx dy \left(= \frac{1}{n} \sum_i (y_i - ax_i - b)^2 \right)$$

$$\begin{cases} \frac{\partial \mathbf{w}}{\partial \mathbf{a}} = \mathbf{0} = \iint \mathbf{x}(\mathbf{y} - \mathbf{a}\mathbf{x} - \mathbf{b})\mathbf{f}(\mathbf{x}, \mathbf{y})\mathbf{d}\mathbf{x}\mathbf{d}\mathbf{y} \\ \frac{\partial \mathbf{w}}{\partial \mathbf{b}} = \mathbf{0} = \iint (\mathbf{y} - \mathbf{a}\mathbf{x} - \mathbf{b})\mathbf{f}(\mathbf{x}, \mathbf{y})\mathbf{d}\mathbf{x}\mathbf{d}\mathbf{y} \end{cases}$$

$$\begin{cases} \mathbf{a}(\sigma_{\mathbf{X}}^{2} - \mu_{\mathbf{X}}^{2}) + \mathbf{b}\mu_{\mathbf{X}} = \rho\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}} + \mu_{\mathbf{X}}\mu_{\mathbf{Y}} \\ \mathbf{a}\mu_{\mathbf{X}} + \mathbf{b} = \mu_{\mathbf{Y}} \end{cases}$$

Fully correlated
$$\rho=1$$

Fully anti-correlated $\rho=-$
Then Y = aX+b

 \Rightarrow

Decorrelation

Covariance matrix for **n** variables **X**_i:

$$\Sigma_{ij} = \mathbf{Cov}(\mathbf{X}_{i}, \mathbf{X}_{j}) \Longrightarrow \Sigma = \begin{pmatrix} \sigma_{1} & \rho_{12}\sigma_{1}\sigma_{2} & \cdots & \rho_{1n}\sigma_{1}\sigma_{n} \\ \rho_{12}\sigma_{1}\sigma_{2} & \sigma_{2}^{2} & \cdots & \rho_{2n}\sigma_{2}\sigma_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1n}\sigma_{1}\sigma_{n} & \rho_{2n}\sigma_{2}\sigma_{n} & \cdots & \sigma_{n}^{2} \end{pmatrix}$$

2

For uncorrelated variables Σ is diagonal

Real and **symmetric** matrix: can de diagonalized \rightarrow One can define **n** new uncorrelated variables **Y**_i

$$\Sigma' = \begin{pmatrix} \sigma_{1}^{*2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{*2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{n}^{*2} \end{pmatrix} = \mathbf{B}^{-1} \Sigma \mathbf{B}, \quad \mathbf{Y} = \mathbf{B} \mathbf{X}$$

σ'_i² are the **eigenvalues** of Σ, B contains the **orthonormal eigenvectors**. The Y_i are the **principal components**. Sorted for the larger to the smaller σ' they allow **dimensional reduction**

Moments

For any function g(x), the expectation of g is : E[g(X)] = $\int g(x)f(x)dx$ It's the mean value of g

Moments μ_k are the expectation of X^k.

- 0^{th} moment : $\mu_0 = 1$ (pdf normalization)
- 1^{st} moment : $\mu_1 = \mu$ (mean)
- X' = X- μ_1 is a central variable 2nd central moment : $\mu_2^2 = \sigma^2$ (variance)

 $\begin{array}{ll} \textbf{Characteristic function}: \quad \varphi(\textbf{t}) = \textbf{E}[\textbf{e}^{ixt}] = \int f(\textbf{x}) \textbf{e}^{ixt} d\textbf{x} = \textbf{F}\textbf{T}^{-1}[\textbf{f}] \\ \textbf{From Taylor expansion}: \quad \varphi(\textbf{t}) = \int \sum_{k} \frac{(\textbf{i}\textbf{t}\textbf{x})^{k}}{k!} f(\textbf{x}) d\textbf{x} = \sum_{k} \frac{(\textbf{i}\textbf{t})^{k}}{k!} \mu_{k} \\ \mu_{k} = -\textbf{i}^{k} \frac{\textbf{d}^{k} \varphi}{\textbf{d} \textbf{t}^{k}} \bigg|_{\textbf{t}=0} \end{array} \\ \begin{array}{l} \textbf{Pdf entirely defined by its moments} \\ \textbf{CF}: \textbf{useful tool for demonstrations} \end{array}$

Skewness and kurtosis

Reduced variable : X'' = (X- μ)/ σ = X'/ σ

Measure of asymmetry :

 3^{rd} reduced moment : $\mu''_3 = \sqrt{\beta_1} = \gamma_1$: skewness $\gamma_1=0$ for symmetric distribution. Then mean = median

Measure of shape :

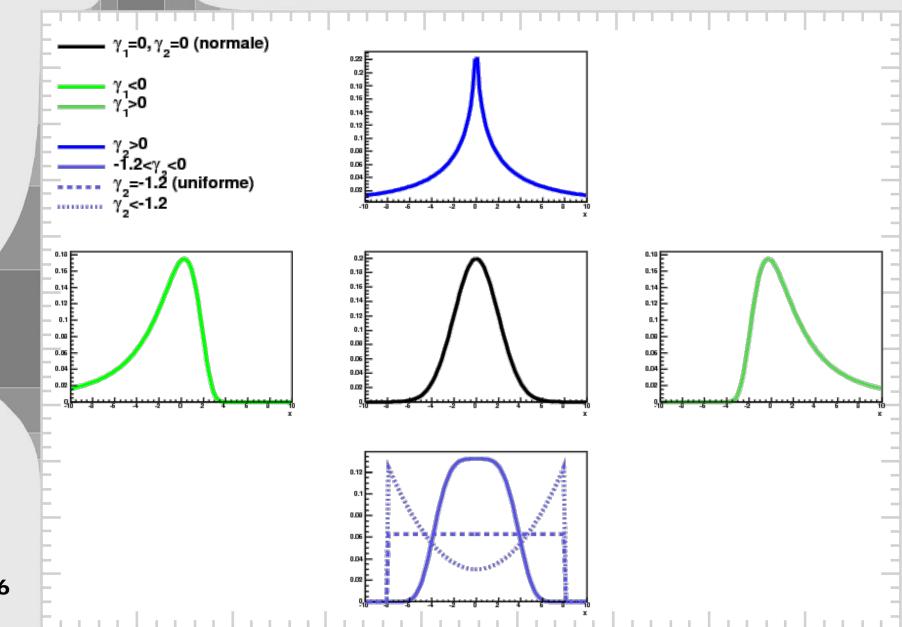
4th reduced moment : $\mu''_4 = \beta_2 = \gamma_2 + 3$: kurtosis For the normal distribution $\beta_2 = 3$ and $\gamma_2 = 0$

Generalized Koenig's theorem

 $\mu''_{n} = \left(\frac{1}{\mu'_{n}}\right) \quad \mu'_{n}$

$$\mu'_{n} = (-1)^{n} (1-n) \mu_{1}^{n} + \sum_{k=2}^{n} \frac{n!}{k! (n-k)!} (-\mu_{1})^{n-k} \mu_{k}$$

Skewness and kurtosis (2)



26

Of Statistics

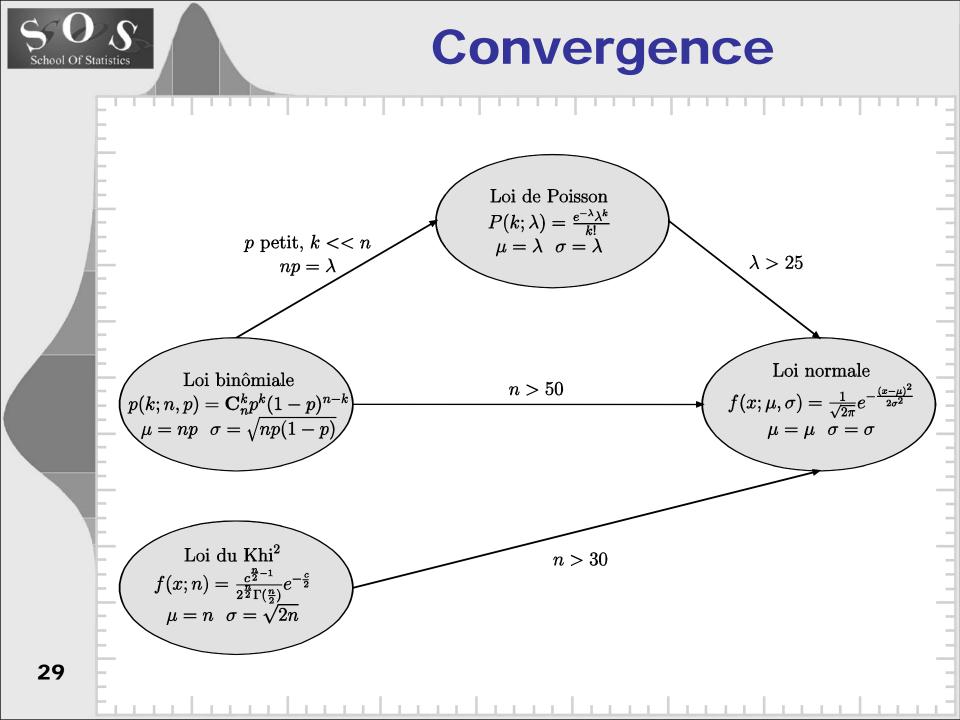
Discrete distributions

Binomial distribution: randomly choosing K objects within a finite set of **n**, with a fixed drawing probability of **p** Variable : K p = 0.65 **Parameters** : n,p = 0.65 $: P(k;n,p) = \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k} \frac{p}{k!} = 0.65$: n,p Law Mean : np Variance : np(1-p) **Poisson distribution** : limit of the binomial when $n \rightarrow +\infty$, $p \rightarrow 0$, $np = \lambda$ Counting events with fixed probability per time/space unit. Variable : K $\lambda = 6.5$ Parameters :λ : P(k; λ) = $\frac{e^{-\lambda}\lambda^{k}}{k!}$ Law :λ Mean 0.04 Variance :λ

Real distributions

Uniform distribution : equiprobability over a finite range [a,b] **Parameters** : a,b : $f(x;a,b) = \frac{1}{b-a}$ if a < x < bLaw : $\mu = (a+b)/2$ Mean : $v = \sigma^2 = (b - a)^2 / 12$ Variance **Normal distribution (Gaussian) :** limit of many processes Parameters : μ , σ Law : $f(x; \mu, \sigma) = \frac{1}{\sigma_{2}/2\pi} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$ WMH **Chi-square distribution** : sum of the square 0.05 of n normal reduced variables₂ $\mathbf{C} = \sum_{k=1}^{n} \left(\frac{\mathbf{X}_{k} - \mu_{\mathbf{X}_{k}}}{\sigma_{\mathbf{X}_{k}}} \right)$ Variable **Parameters : n** $f(c;n) = c^{\frac{n}{2}-1}e^{-\frac{c}{2}}/2^{\frac{n}{2}-1}\Gamma\left(\frac{n}{2}\right)$ 80.08 Law Variance Mean : 2n : n

28



30

Multidimensional Pdfs

Multinomial distribution : randomly choosing K_1 , K_2 ,..., K_s objects within a finite set of **n**, with a fixed drawing probability for each category $p_1, p_2, \dots p_s$ with $\Sigma K_i = n$ and $\Sigma p_i = 1$

Parameters

Law

$$P(\vec{k};n,\vec{p}) = \frac{n!}{k_1!k_2!\dotsk_s!} p_1^{k_1} p_2^{k_2} \dots p_s^{k_s}$$

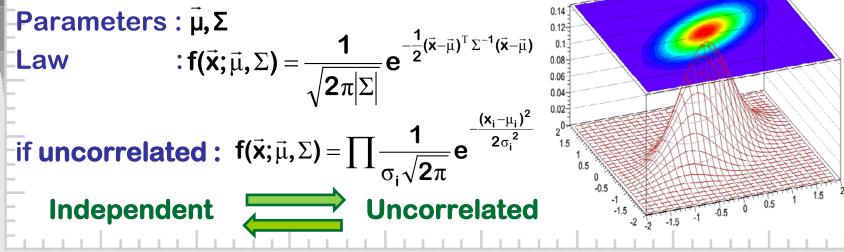
Mean

: µ_i=np_i

Variance

Rem : variables are not independent. The binomial, correspond to s=2, but has only one independent variable.

Multinormal distribution :



Sum of random variables

The sum of several random variable is a new random variable S

Assuming the mean and variance of each variable exists, Mean value of S :

 $S = \sum X_i$

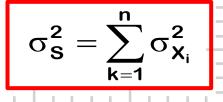
$$\mu_{s} = \int \left(\sum_{i=1}^{n} \mathbf{x}_{i}\right) \mathbf{f}(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) \mathbf{dx}_{1} \dots \mathbf{dx}_{n} = \sum_{i=1}^{n} \int \mathbf{x}_{i} \mathbf{f}_{\mathbf{x}_{i}}(\mathbf{x}_{i}) \mathbf{dx}_{i} = \sum_{i=1}^{n} \mu_{i}$$

The mean is an additive quantity

Variance of S :

$$\sigma_{s}^{2} = \int \left(\sum_{i=1}^{n} \mathbf{x}_{i} - \mu_{\mathbf{x}_{i}} \right)^{2} \mathbf{f}(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) d\mathbf{x}_{1} \dots d\mathbf{x}_{n}$$
$$= \sum_{i=1}^{n} \sigma_{\mathbf{x}_{i}}^{2} + 2 \sum_{i} \sum_{j < i} Cov(\mathbf{X}_{i}, \mathbf{X}_{j})$$

For uncorrelated variables, the variance is additive -> used for error combinations



Sum of random variables

Probability density function of **S** : **f**_s(**s**) Using the characteristic function :

$$\varphi_{s}(t) = \int f_{s}(s)e^{ist}ds = \int f_{\vec{x}}(\vec{x})e^{it\sum x_{i}}d\vec{x}$$

For independent variables

$$\varphi_{s}(t) = \prod \int f_{x_{k}}(x_{k}) e^{itx_{k}} dx_{k} = \prod \varphi_{x_{i}}(t)$$

The characteristic function factorizes.

Finally the pdf is the Fourier transform of the cf, so :

$$\mathbf{f}_{\mathbf{S}} = \mathbf{f}_{\mathbf{X}_1} * \mathbf{f}_{\mathbf{X}_2} * \dots * \mathbf{f}_{\mathbf{X}_n}$$

The pdfs of the sum is a convolution. Sum of Normal variables \rightarrow Normal Sum of Poisson variables (λ_1 and λ_2) \rightarrow Poisson, $\lambda = \lambda_1 + \lambda_2$ Sum of Khi-2 variables (n_1 and n_2) \rightarrow Khi-2, $n = n_1 + n_2$

Sum of independent variables

Weak law of large numbers

Sample of size **n** = realization of **n** independent variables, with the same distribution (mean μ , variance σ^{2}).

The **sample mean** is a realization of

$$\mathbf{M} = \frac{\mathbf{S}}{n} = \frac{1}{n} \sum \mathbf{X}_{i}$$

Mean value of M : $\mu_{M}=\mu$ Variance of M : $\sigma_{M}^{2} = \sigma^{2}/n$

Central-Limit theorem

n independent random variables of mean μ_i and variance σ_i^2

Sum of the reduced variables : $C = \frac{1}{\sqrt{n}} \sum \frac{X_i - \mu_i}{\sigma_i}$

The pdfs of **C** converge to a reduced normal distribution :

$$f_{c}(c) \xrightarrow[n \to +\infty]{} + \infty \xrightarrow{1} \frac{1}{\sqrt{2\pi}} e^{-\frac{c^{2}}{2}}$$

The sum of many random fluctuation is normally distributed

Central limit theorem

Naive demonstration:

For each X_i : X", has mean 0 and variance 1. So its characteristic function is : t^2

$$\varphi_{\mathbf{x}_{i}^{"}}(\mathbf{t}) = \mathbf{1} - \frac{\mathbf{t}}{\mathbf{2}} + \mathbf{o}(\mathbf{t}^{2})$$

Hence the characteristic function of **C** :

$$\varphi_{\mathbf{C}}(\mathbf{t}) = \varphi_{\mathbf{x}_{i}^{"}}\left(\frac{\mathbf{t}}{\sqrt{\mathbf{n}}}\right)^{\mathbf{n}} = \left(1 - \frac{\mathbf{t}^{2}}{2\mathbf{n}} + \mathbf{o}\left(\frac{\mathbf{t}^{2}}{\mathbf{n}}\right)\right)^{\mathbf{n}}$$

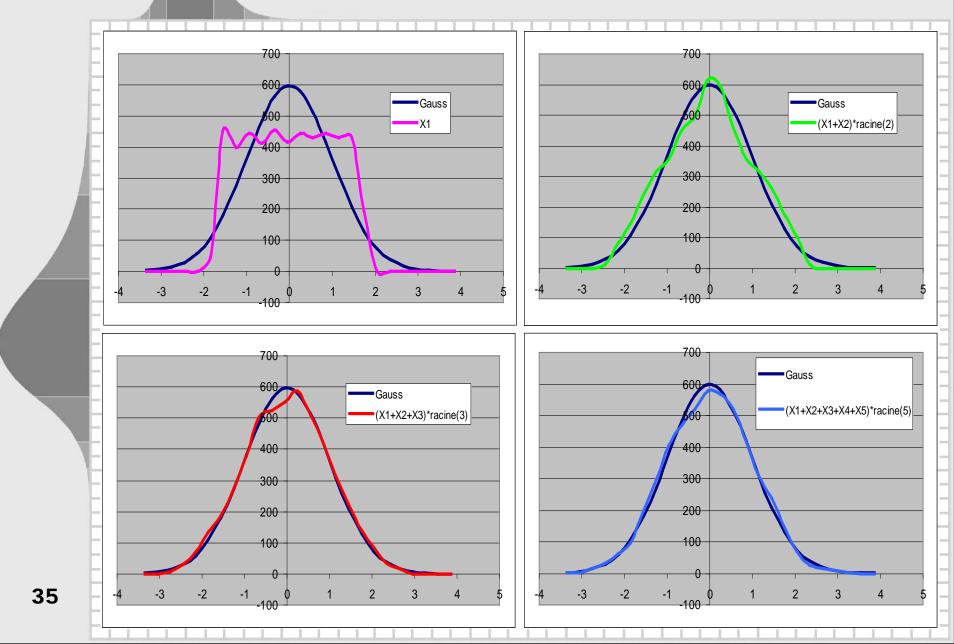
For **n** large :

$$\lim_{n \to +\infty} \varphi_{c}(t) = \lim_{n \to +\infty} \left(1 - \frac{t^{2}}{2n} \right)^{n} = e^{-\frac{t^{2}}{2}} = FT^{-1}[f_{c}]$$

This is a naive demonstration, because we assumed that the moments were defined.

34 For CLT, only mean and variance are required (much more complex)

Central limit theorem



Any measure (or combination of measure) is a realization of a random variable.

- Measured value : θ
- True value : θ_0

Uncertainty = quantifying the difference between θ and θ_0 : \rightarrow measure of dispersion

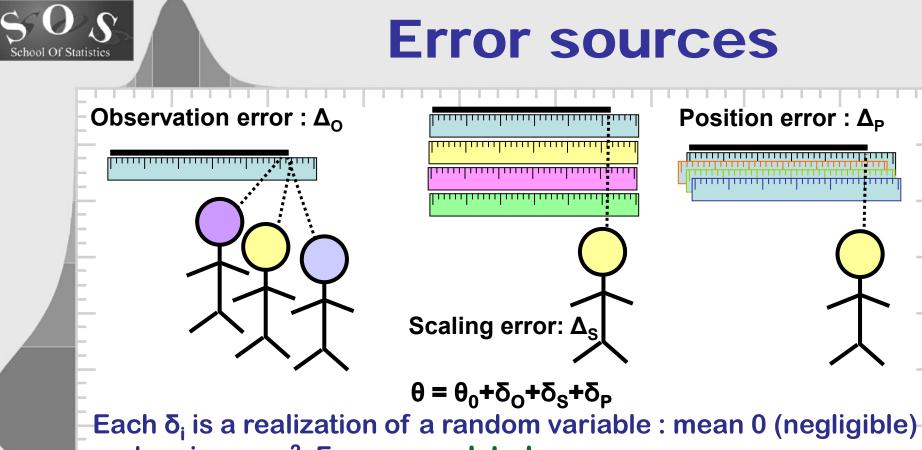
We will postulate : $\Delta \theta = \alpha \sigma_{\theta}$ Absolute error, always positive

Usually one differentiate

- Statistical error : due to the measurement Pdf.

- Systematic errors or bias \rightarrow fixed but unknown deviation (equipment, assumptions,...)

Systematic errors can be seen as statistical error in a set a similar experiences.



and variance σ_i^2 . For uncorrelated error sources :

$$\Delta_{\mathbf{o}} = \alpha \sigma_{\mathbf{o}}$$

$$\Delta_{\mathbf{s}} = \alpha \sigma_{\mathbf{s}}$$

$$\Delta_{\mathbf{p}} = \alpha \sigma_{\mathbf{p}}$$

$$\Delta_{\mathbf{p}} = \alpha \sigma_{\mathbf{p}}$$

Choice of α ?

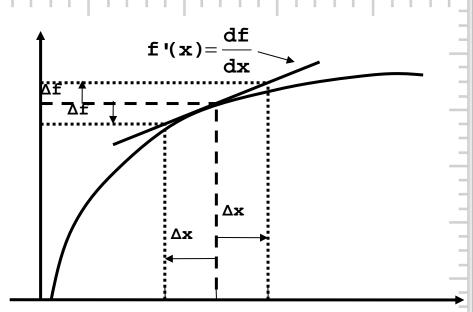
If many sources, from central-limit \rightarrow normal distribution - α =1 gives (approximately) a 68% confidence interval α =2 gives 95% CL (and at least 75% from Bienaymé-Chebyshev)

37

Error propagation

Measure : $x \pm \Delta x$ Compute : $f(x) \rightarrow \Delta f$?

Assuming **small errors**, using Taylor expansion :



$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \frac{df}{dx} \Delta \mathbf{x} + \frac{1}{2} \frac{d^2 f}{dx^2} \Delta \mathbf{x}^2 \left(+ \frac{1}{6} \frac{d^3 f}{dx^3} \Delta \mathbf{x}^3 + \frac{1}{24} \frac{d^4 f}{dx^4} \Delta \mathbf{x}^4 \right)$$

$$f(\mathbf{x} - \Delta \mathbf{x}) = f(\mathbf{x}) - \frac{df}{dx} \Delta \mathbf{x} + \frac{1}{2} \frac{d^2 f}{dx^2} \Delta \mathbf{x}^2 \left(-\frac{1}{6} \frac{d^3 f}{dx^3} \Delta \mathbf{x}^3 + \frac{1}{24} \frac{d^4 f}{dx^4} \Delta \mathbf{x}^4 \right)$$

$$\Rightarrow \Delta f = \frac{1}{2} \left| f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x} - \Delta \mathbf{x}) \right| = \frac{df}{dx} \Delta \mathbf{x} \left(+ \frac{1}{6} \frac{d^3 f}{dx^3} \Delta \mathbf{x}^3 \right)$$

Error propagation

Measure : $x \pm \Delta x$, $y \pm \Delta y$,... Compute : $f(x,y,...) \rightarrow \Delta f$? Idea : treat the effect of each variable as separate error sources

$$\Delta_{\mathbf{x}}\mathbf{f} = \left|\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right| \Delta \mathbf{x}, \Delta_{\mathbf{y}}\mathbf{f} = \left|\frac{\partial \mathbf{f}}{\partial \mathbf{y}}\right| \Delta \mathbf{y}$$

Then

