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Sample and population 

SAMPLE 
Finite size  

Selected through a 
random process 
eg. Result of  a 
measurement 

POPULATION 
Potentially infinite 

size  
 

eg. All possible 
results 

Characterizing the sample, the population and the 
drawing procedure 

  → Probability theory  (today’s lecture) 

Using the sample to estimate the characteristics of  
the population 

   → Statistical inference (tomorrow’s lecture) 
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Random process 
A random process (« measurement » or 
« experiment ») is a process whose outcome cannot 
be predicted with certainty. 
It will be described by :     

   Universe: Ω = set of all possible outcomes. 
   Event : logical condition on an outcome. It can 
either be true or false; an event splits the universe in 
2 subsets. 
 

 
 
An event A will be identified by the subset A for 
which A is true. 



Interpretation of this number : 
    - Frequentist approach : if we repeat the random 
process a great number of times n , and count the number of 
times the outcome satisfy event A, nA then the ratio : 

                                                  defines a probability 
 

   - Bayesian interpretation : a probability is a measure of 
the credibility associated to the event.                           5 

Probability 
A probability function P is defined by :   (Kolmogorov, 1933) 

            P : {Events} → [0:1] 
                    A  →  P(A) 
satisfying : 
 P(Ω)=1 
 P(A or B) = P(A) + P(B)   if A and B = Ø 
   

P(A)
n

n
lim A

n
=

+∞→
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Simple logic 
Event « not A » is associated 
with the complement A. 
 

P(A) = 1–P(A) 
      P(Ø) = 1-P(Ω) = 0 

Event « A and B »  

Event « A or B »  
 

P(A or B) = P(A)+P(B)–P(A and B) 
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Conditional probability 
If an event B is known to be true, one can restrain the 
universe to Ω’=B and define a new probability function 
on this universe, the conditional probability. 

 

P(A|B) = « probability of A given B » 
 

P(B)
B) and P(A

B)| P(A =
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Incompatibility and 
Indpendance 

Two incompatible events cannot be true 
simultaneously, then : P(A and B) = 0   

 
P(A or B) = P(A)+P(B)  

Two events are independent, if the realization 
of one is not linked in any way to the 
realization of the other : 

P(A|B)=P(A)    and     P(B|A) = P(B) 
 

P(A and B) = P(A).P(B) 



Bayes theorem 
The definition of conditional probability leads to : 
P(A and B) = P(A|B).P(B) = P(B|A).P(A) 
Hence relating P(A|B) to P(B|A) by the Bayes theorem : 
 
 
 
Or, using a partition {Bi} :  
 
 
 
This theorem will play a major role in Bayesian inference : 
given data and a set of models, it translates into : 
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Application of Bayes 
100 dices in a box : 
70 are equiprobable (A)    30 have a probability 1/3 to get 6 (B) 
You pick one dice, throw it until you reach 6 and count the 
number of try. Repeating the process thrice, you get 2, 4 and 1. 

What’s the probability that the dice is equilibrated ? 
 

For one throw :  
Combining several throw: (for one dice, throws are independent) 
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Random variable 
When the outcome of the random process is a number 
(real or integer), we associate to the random process  
a random variable X. 
Each realization of the process leads to a particular 
result : X=x.       x is a realization of X. 
 

dx
dF

f(x) =

For a discrete variable :  
       Probability law : p(x) = P(X=x) 
For a real variable : P(X=x)=0,  
       Cumulative density function : F(x) = P(X<x) 
dF = F(x+dx)-F(x) = P(X < x+dx) - P(X < x) 
                                  = P(X < x or x < X < x+dx) - P(X < x)  
                                  = P(X < x) + P(x < X < x+dx) - P(X < x) 
                                  = P(x < X < x+dx) = f(x)dx 

      

     Probability density function (pdf) :  
                                



Density function 
Probability density function 

 
 
 
 
 
 

      
Note : discrete variables can 
also be described by a 
probability density function 
using Dirac distributions: 

 

Cumulative density function 
 
 
 
 
 
 
By construction :  
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Change of variable 
Probability density function of Y = φ(X) 
For φ bijective 

•φ increasing : X<x ⇔ Y<y 

 
•φ decreasing : X<x ⇔ Y>y 

 

 
in both case : 

 
If φ not bijective : split into several bijective parts φi 

 
 

 
Very useful for Monte-Carlo : if X is uniformly distributed 
between 0 and 1 then  Y=F-1(X) has F for cumulative density 
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Multidimensional PDF (1) 
Random variables can be generalized to random vectors : 

 
the probability density function becomes : 
 
 
 
 
 
and 
 
 Marginal density : probability of only one of the component 
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Multidimensional PDF (2) 
For a fixed value of Y=y0:  
f(x|y0)dx = « Probability of  x<X<x+dx  knowing that Y=y0 »  
is , a conditional density for X. It is proportional to f(x,y), so 
 
 
 
 
 
The two random variables X and Y are independent if all events 

of the form x<X<x+dx are independent from y<Y<y+dy 

f(x|y)=fX(x) and f(y|x)=fY(y)  hence   f(x,y)= fX(x).fY(y) 
 

Translated in term of pdf’s, Bayes’ theorem becomes: 
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for statistical 
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Sample PDF 
A sample is obtained from a random drawing within a 
population, described by a probability density function. 
 
We’re going to discuss how to characterize, independently 
from one another:  
                        - a population 
                        - a sample 
 

To this end, it is useful, to consider a sample as a finite set 
from which one can  randomly draw elements, with 
equipropability 
We can the associate to this process a probability density, the 
empirical density or sample density 
 
 
This density will be useful to translate properties of 
distribution to a finite sample.  
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Characterizing a distribution 

How to reduce a distribution/sample to a finite 
number of values ? 

 
 Measure of location:  
    Reducing the distribution to one central value 
  → Result 
 Measure of dispersion:  
    Spread of the distribution around the central value 
   → Uncertainty/Error 
 Higher order measure of shape 

 
 Frequency table/histogram (for a finite sample) 
 17 



Measure of location 

Mean value : Sum (integral) of all possible values weighted by 
the probability of occurrence: 
 
 
Median : Value that split the distribution in 2 equiprobable parts 
 
 
 
 
Mode : The most probable value = maximum of pdf 
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Measure of dispersion 

Standard deviation (σ) and variance (v= σ²) : Mean value of the 
squared deviation to the mean : 

 
    Koenig’s theorem : 
 
 
 

 
Interquartile difference : generalize the median by splitting the 
distribution in 4 : 
 
 
Others… 
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Bienaymé-Chebyshev 
Consider the interval : Δ=]-∞,µ-a[∪]µ+a,+∞[ 
Then for x∈Δ : 

 
 
 
 
 
 

 
Finally Bienaymé-Chebyshev’s inequality 
 

It gives a bound on the confidence level of the interval  μ±aσ 
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a 1 2 3 4 5 

Chebyshev’s bound 0 0.75 0.889 0.938 0.96 

Normal distribution 0.683 0.954 0.997 0.99996 0.9999994 



Multidimensional case 
A random vector (X,Y) can be treated as 2 separate variables 
               mean and variance for each variable : μX μY σX σY 

Doesn’t take into account correlations between the variables 
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Generalized measure of  dispersion : Covariance of  X and Y 
 
 
 
 
 
Correlation :                         Uncorrelated : ρ=0   
 
    Independent                      Uncorrelated 

YXXYYXYX y)dxdy)f(x,-)(y(xY)Cov(X, μμμσρσμμ −==−= ∫∫
∑
=

−=
n

1i
yiXi )-)(y(x

n
1
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YX

Y)Cov(X,
σσ

ρ =

ρ=-0.5 ρ=0 ρ=0.9 

ρ=0 

 only quantify linear correlation 



Regression 
Measure of location: 

• a point : (μX , μY) 

• a curve : line closest to the points → linear regression  
Minimizing the dispersion between the curve « y=ax+b » and 
the distribution : 
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Then Y = aX+b 



Decorrelation 
Covariance matrix for n variables Xi: 
 
 
 
 
For uncorrelated variables  Σ is diagonal 

Real and symmetric matrix: can de diagonalized → One can 
define n new uncorrelated variables Yi 

 
 
 
 
σ’i

2 are the eigenvalues of Σ,            
B contains the orthonormal eigenvectors. 
The Yi are the principal components. Sorted for the larger to 
the smaller σ’ they allow dimensional reduction 
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Characteristic function : 
 

From Taylor expansion : 
 

                                   Pdf entirely defined by its moments 
                                   CF : useful tool for demonstrations   

Moments 
For any function g(x), the expectation of g is : 
                                                    It’s the mean value of g 
 
Moments μk are the expectation of Xk. 
      0th moment : μ0=1    (pdf normalization) 
      1st moment :  μ1=μ    (mean) 
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X’ = X-μ1 is a central variable 
      2nd central moment : μ’2=σ2 (variance) 



Skewness and kurtosis 

Reduced variable : X’’ = (X-μ)/σ = X’/ σ 

Measure of asymmetry : 
      3rd reduced moment : μ’’3 = √β1 = γ1 : skewness 

γ1=0 for symmetric distribution. Then  mean = median 
 
Measure of shape : 
      4th reduced moment : μ’’4 = β2 = γ2 + 3 : kurtosis 
For the normal distribution β2 =3 and γ2 =0 

 
Generalized Koenig’s theorem 
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Skewness and kurtosis (2) 
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Discrete distributions 
Binomial distribution: randomly choosing K objects within a finite 
set of n, with a fixed drawing probability of p 
Variable  : K 
Parameters  : n,p 
Law              : 
Mean              : np 
Variance          : np(1-p) 
 
Poisson distribution : limit of the binomial when n→+∞,p →0,np=λ 
Counting events with fixed probability per time/space unit. 
Variable  : K 
Parameters    : λ 

Law     : 
Mean            : λ 
Variance       : λ 
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Real distributions 
Uniform distribution : equiprobability over a finite range [a,b] 
Parameters  : a,b 
Law              : 
 

Mean              : 
Variance          : 
 

Normal distribution (Gaussian) : limit of many processes 
Parameters : μ, σ 

Law             : 
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Chi-square distribution : sum of the square 
of n normal reduced variables 
Variable  : 
Parameters  : n 
Law              : 
 

Mean              : n      Variance          : 2n 
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Convergence 
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Multinormal distribution :  
Parameters : 
Law                : 
     

 
if uncorrelated : 
      

     Independent                       Uncorrelated  
   

Multidimensional  Pdfs 
Multinomial distribution : randomly choosing K1 , K2 ,… Ks objects 
within a finite set of n, with a fixed drawing probability for each 
category p1, p2,… ps    with  ΣKi=n and Σpi=1 

Parameters  : n, p1, p2,… ps  
Law              : 
 

Mean              : μi=npi 

Variance          : σi
2=npi(1-pi)          Cov(Ki,Kj)=-npipj 

Rem : variables are not independent. The binomial, correspond to s=2,  but has 
only one independent variable. 
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Variance of  S : 
 
 
 
 
 
 
 
For uncorrelated variables, the variance is additive  
             -> used for error combinations 

The sum of  several random variable is a new random variable S 

 
Assuming the mean and variance of  each variable exists, 
Mean value of  S : 
 
 
The mean is an additive quantity 

Sum of random variables 
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Probability density function of  S : fS(s) 
Using the characteristic function : 
 
 
For independent variables 
 
 
The characteristic function factorizes. 
Finally the pdf  is the Fourier transform of  the cf, so : 
 
 
The pdfs of  the sum is a convolution. 
Sum of  Normal variables → Normal 
Sum of  Poisson variables (λ1 and λ2) → Poisson, λ = λ1 + λ2 

Sum of  Khi-2    variables (n1 and n2)  → Khi-2,    n = n1 + n2 

Sum of random variables 
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Weak law of  large numbers 
Sample of  size n = realization of  n independent variables, with 
the same distribution (mean μ, variance σ2). 

The sample mean is a realization of    
 

 
Mean value of  M : μM=μ        Variance of  M : σM

2 = σ2/n 

 
Central-Limit theorem 
n independent random variables of  mean μi and variance σi

2 
 

Sum of  the reduced variables :   
 

 

The pdfs of  C converge to a reduced normal distribution : 
 
 
 

The sum of  many random fluctuation is normally distributed 
 
 

Sum of independent variables 
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Central limit theorem 
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Naive demonstration: 
For each Xi  : X’’i has mean 0 and variance 1. So its characteristic 
function is : 
 
 

Hence the characteristic function of  C : 
 
 
 
For n large : 
 
 
 
This is a naive demonstration, because we assumed that the 
moments were defined. 
For CLT, only mean and variance are required (much more 
complex) 
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Central limit theorem 
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Dispersion and uncertainty 

Any measure (or combination of measure) is a realization of a 
random variable. 
        - Measured value : θ 
        - True value           : θ0 

 
Uncertainty = quantifying the difference between θ and θ0 :  

→ measure of dispersion 
We will postulate : Δθ = ασθ  Absolute error, always positive 

 
Usually  one differentiate  
     - Statistical error : due to the measurement Pdf. 
     - Systematic errors or bias → fixed but unknown deviation 
(equipment, assumptions,…) 
       Systematic errors can be seen as statistical error in a set a 
similar experiences.        36 



Error sources 

37 

Observation error : ΔO Position error : ΔP 

   Scaling error: ΔS 

θ = θ0+δO+δS+δP   
Each δi is a realization of  a random variable : mean 0 (negligible) 
and variance σi

2. For uncorrelated error sources :  
 
 
 
Choice of  α ?   
If  many sources, from central-limit → normal distribution 
 α=1 gives (approximately) a 68% confidence interval  
 α=2 gives 95% CL (and at least 75% from Bienaymé-Chebyshev) 
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Error propagation 
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f(x) 

x 

Δx 
Δx 

dx
df

(x)f' =

Δf 
Δf 

 
Measure : x±Δx 
Compute : f(x) → Δf ?  
 
Assuming small errors,   
using Taylor expansion : 
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Error propagation 
Measure : x±Δx, y±Δy,… 
Compute : f(x,y,…) -> Δf ? 

Idea : treat the effect of  
each variable as separate 
error sources 
 
 
 
Then 
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