1000 days on orbit with AMS-02

Prof. B.Bertucci Perugia University & INFN

LPNHE, March 27. 2014

Alpha Magnetic Spectrometer

- AMS-02 is a particle physics detector devoted to the precision measurement of cosmic radiation in the near Earth orbit in the GeV – TeV energy range
- It has been installed on the International Space Station (ISS) on May 19, 2011
- It will take data data for the rest of the life of the ISS (2024)

AMS : the facts

- 5 m x 4 m x 3m
- 7.5 tons
- 300k readout channels
- More than 600 microprocessors reduce the data rate from 7 Gb/s to 10 Mb/s
 - Total power consumption < 2.5 kW

The AMS Collaboration

AMS-02 : (part) of the Collaboration @ NASA-JSC

AMS-02 @ Perugia: 1 month before the launch !

PART 1 : The scientific objectives

Objectives

- Fundamental physics & Antimatter :
 - Primordial origin (Signal: anti-nuclei)

Dirac's Nobel speech

"We must regard it rather as an accident that the Earth [...] contains a preponderance of negative electrons and positive protons. It is quite possible that for some stars it is the other way about."

Anti-Matter & Dark Matter

WIMP as the responsible of Dark Matter (?) Direct Searches Indirect DM search \rightarrow search for (RARE IN CR) products from their annhilation....

Anti-matter & Exotic sources (DM ?)

What is needed?

Leptophilic dark matter or astrophysical sources ??

- Shape of the excess accurately measured over an extended energy range
- Knowledge of "cosmic background"

Knowledge of cosmic background

Precise measurement of the energy spectra of B, C ... provides information on Cosmic Ray Interactions and Propagation Interactions with the Interstellar Medium:

 $C + (p,He) \rightarrow B + ...$

AMS Objectives according to some blogs...

http://www.rumormillnews.com/cgi-bin/archive.cgi?read=204750

...Shuttle Endeavor's official mission is to haul a deliberately-mislabeled "Alpha Magnetic Spectrometer" (AMS-02) to the International Space Station and install it. NASA claims that the AMS-02 is a state-of-the-art particle physics detector. In actuality the AMS-02 is an advanced extreme-energy neutral-particle-beam space weapon intended to shoot down Star Visitor craft (UFOs). And instead of the International Space Station, Shuttle Endeavor will deliver the AMS-02 Star Wars weapon to a secret military space station, also in orbit....

••••

You are invited to join in a Joint Psychic Exercise to address these problems.

We will focus on one or both of two things. First is to direct telekinetic, electrical-pulse, disruptive-magnetic, and/or other energies to deactivate the AMS-02 neutral-particle-beam weapon and render it inoperative. Thus there will be nothing useful to deliver to the military space station.

AMS Objectives

- Fundamental physics & Antimatter :
 - Primordial origin (anti-nuclei ?)
 - Exotic sources a.k.a DARK MATTER (positrons, anti-p, anti-D?,gammas)
- The CR composition and energy spectrum
 - (how to understand the beam)
 - Sources & acceleration : Proton and He
 - Propagation in the ISM: (nuclear and isotopic composition)

What is needed?

• Particle identification and E measurement up to TeV:

- e/p separation at the 10⁴ level by means of independent detectors
- Z : redundant measurements to evaluate fragmentation along the detector
- Charge sign: matter to anti-matter separation (magnetic field!)

Statistics

- acceptance & efficiency
- Exposure time

PART 2 : The experimental challenge

- a) DESIGN: the detectors
- b) TEST: test on ground
- c) Operation & Monitoring on orbit: calibration on flight

AMS: A TeV precision, multipurpose spectrometer

Transition Radiation Detector (TRD) Identifies Positrons, Electrons by transition radiation and Nuclei by dE/dX

5,248 tubes selected from 9,000, 2 m length centered to 100µm, verified by CAT scanner

ep discrimination with TRD

TRD e/p separation

Time of Flight System

Measures Velocity and Charge of particles

Tracker

Perugia and Geneva groups

Tracker: ≈2600 Si sensors, 192 ladders, 200 kchannels

- 9 layers of double sided silicon microstrip detectors to reconstruct the particle trajectory with 10 μ resolution in the bending plane
- \rightarrow 20 –UV Lasers to monitor inner tracker alignment
- \rightarrow Cosmic rays to monitor outer tracker alignment

Identification of light nuclei with the tracker

9 (x 2) independent measurements of the particle energy deposit in silicon + High dinamic range VA chips =

Charge identification up to Fe

Identification of light nuclei with the inner tracker

Selected charge: Z = 1 [Hydrogen] entries / bin ₉01 ₉01 pres tracker mean charge (CU @ MIP) R = 7 - 100 GV 112000 30 Η 25 10⁴ 20 10³ 15 10² 10 10 5 Ω 12 2 4 6 8 10 10² 0 10 tracker rigidity R = p/Z (GV/c) nuclear charge Z $A \sim \left\langle \frac{dE}{dx} \right\rangle \propto \frac{Z^2}{\beta^2} \log \gamma$ AMS Collaboration \rightarrow Truncated mean of the energy deposit

Tracker <dE/dX> VS Rigidity

 \rightarrow Shaded area corresponds to the selection of a given Z with likelihood charge estimator

AMS Nuclei Measurement on ISS

Ring Imaging CHerenkov (RICH)

CIEMAT

10,880 photosensors to identify nuclei and their velocity

Grenoble ²⁸

Detector performance on ISS RICH

29

Rigidity ~ 200 GV

Boron Rigidity=187 GV

Carbon Rigidity=215 GV

Run/Event 1329086299/ 747549

Run/Event 132643580/ 132197

Particle Charge Measurement

Carbon Fragmentation to Boron in Upper TOF Rigidity 10.6 GV

Boron and Carbon: Sample composition

Particles Identified as Boron in the Inner AMS show signals compatible with higher charges on the 1st

Calorimeter (ECAL)

PISA

LAPP

50,000 fibers, φ =1mm, distributed uniformly inside 450 kg of lead which provides a precision, 3-dimensional, 17X₀ measurement of the directions and energies of light rays and electrons up to 1 TeV

e/p separation with ECAL

electrons and protons behave differently when entering the ECAL

Two complementary techniques can exploit electron/proton differences in ECAL

- 1) 3D imaging of the energy shower allows to discriminate electron or proton initiated showers
- 2) Matching measured momentum in tracker with the deposited energy in ECAL

e/p separation with ECAL+trk

Full coverage of anti-matter & CR physics

	e -	Ρ	He,Li,Be,Fe	γ	e+	P, D	He, Ē
TRD		۲	7			•	Υ
TOF	۲	Ŧ	۲۲	Ŧ	٠	Ţ	ř
Tracker	J	l		八		J	J
RICH							
ECAL		******	I				¥
Physics example		С	osmic Ray Physics	Dark	Antimatter		

Test....for all detectors: Before assembly : Beam test, Thermal, Vibration, TVT,EMI After assembly : EMI, TVT, Beam Test

AFTER 9000 hrs of Thermal-Vacuum Tests THE END OF SUB-SYSTEMs TESTS AT SERMS

May 16, 2011

TITUTI

May 19, 2011: AMS installation completed

(L)

AMS on ISS

Orbital DAQ parameters

To date AMS collected > 45 billion events

The Thermal environment

AMS Flight Electronics for Thermal Control

Tracker Thermal Control System

Seasonal effects on external Tracker planes

Alignment accuracy of the 9 Tracker layers over 18 months

PART 3 : The results

- Positron fraction
- Electron/Positron fluxes
- Proton/He fluxes
- B/C ratio
-

"First Result from the AMS on the ISS: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV"

Selected as a "Viewpoint" by APS

Analysis: the template method

- 1. The *ecal classifier* is used to *remove most of the protons with high efficiency on positrons*
- 2. Reference spectra (or templates) are built for
 - protons and electrons \rightarrow from data
 - CC spillover and interactions → from MC
 in the variables E/p and in TRD likelihood
- 3. The templates are *fit to data*, in each energy bin, to obtain the relative contributions
- This method maximizes the signal efficiency, since no further cut is esplicitely applied after ecal classifier

fit to data

- Fit on E/p (left) and on TRD Likelihood (right)
- The fit is repeated at each energy bin

AMS Result: Measurement of the positron fraction

Positron events, positron fraction in each energy bin

Systematic Errors

Energy [GeV]	N _{e+}	Fraction	statistical error	acceptance asymmetry	event selection	bin-to-bin migration	reference spectra	charge confusion	total systematic uncertainty
Energy[GeV]	N _{e+}	Fraction	σ _{stat.}	$\sigma_{acc.}$	$\sigma_{sel.}$	σ _{mig.}	$\sigma_{\rm ref.}$	$\sigma_{c.c.}$	$\sigma_{\text{syst.}}$
1.00-1.21	9335	0.0842	0.0008	0.0005	0.0009	0.0008	0.0001	0.0005	0.0014
1.97-2.28	23893	0.0642	0.0004	0.0002	0.0005	0.0002	0.0001	0.0002	0.0006
3.30-3.70	20707	0.0550	0.0004	0.0001	0.0003	0.0000	0.0001	0.0002	0.0004
6.56-7.16	13153	0.0510	0.0004	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002
09.95-10.73	7161	0.0519	0.0006	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002
19.37-20.54	2322	0.0634	0.0013	0.0001	0.0001	0.0000	0.0001	0.0002	0.0003
30.45-32.10	1094	0.0701	0.0022	0.0001	0.0002	0.0000	0.0001	0.0003	0.0004
40.00-43.39	976	0.0802	0.0026	0.0002	0.0005	0.0000	0.0001	0.0004	0.0007
50.87-54.98	605	0.0891	0.0038	0.0002	0.0006	0.0000	0.0001	0.0004	0.0008
64.03-69.00	392	0.0978	0.0050	0.0002	0.0010	0.0000	0.0002	0.0007	0.0013
74.30-80.00	276	0.0985	0.0062	0.0002	0.0010	0.0000	0.0002	0.0010	0.0014
86.00-92.50	240	0.1120	0.0075	0.0002	0.0010	0.0000	0.0003	0.0011	0.0015
100.0-115.1	304	0.1118	0.0066	0.0002	0.0015	0.0000	0.0003	0.0015	0.0022
115.1-132.1	223	0.1142	0.0080	0.0002	0.0019	0.0000	0.0004	0.0019	0.0027
132.1-151.5	156	0.1215	0.0100	0.0002	0.0021	0.0000	0.0005	0.0024	0.0032
151.5-173.5	144	0.1364	0.0121	0.0002	0.0026	0.0000	0.0006	0.0045	0.0052
173.5-206.0	134	0.1485	0.0133	0.0002	0.0031	0.0000	0.0009	0.0050	0.0060
206.0-260.0	101	0.1530	0.0160	0.0003	0.0031	0.0000	0.0013	0.0095	0.0101
260.0-350.0	72	0.1550	0.0200	0.0003	0.0056	0.0000	0.0018	0.0140	0.0152

AMS Physics: Positron Flux

AMS Physics: Electron Flux

(Electron plus Positron) Spectrum

What is AMS observing? **Astrophysical objects Dark Matter** Cholis arXiv: astro-ph/1304.1840 Kopp hep-ph/1304.1184 1.00 All Milky Way pulsars 0.50 10^{-1} AMS 0.20 ⁺ fraction $e^{+}/(e^{+}+e^{-})$ 0.100.05 AMS AMS-02 data $^{+}\mu^{-}m_{y} = 670 \text{ GeV}, \langle \sigma v \rangle = 4 \times 10^{-24} \text{ cm}^{3}/s$ 0.02 $W^- m_{\chi} = 1 \text{ TeV}, \langle \sigma v \rangle = 1 \times 10^{-23} \text{ cm}^3/s$ 10^{-2} Background 10^{2} 10¹ 10^{3} 5 10 50 100 1 E [GeV] E (GeV)

Different energy behavior of the positron fraction:

- Pulsars predictions:
 - slow fall at high energies
 - anisotropic positron flux
- Dark Matter prediction:
 - steeper fall at high energies
 - isotropic positron flux

AMS future data and phenomenological models

Proton flux Comparison with past measurements

24/02/14

B.Bertucci

65

Helium flux

Comparison with the latest measurements

Boron-to-Carbon ratio

Conclusions

- AMS is the Cosmic Rays observatory of the next decade
- AMS data have potential to shed a light on the nature of the Dark Matter
- The observed positron excess may imply a heavy Dark Matter WIMP particle or a new mechanism of acceleration in the pulsars
- Observation of anomalies in the anti-proton spectrum would be an evidence of the DM hypothesis
- Accurate measurements of the CR primary components are been performed
- More statistic is needed
- AMS precise measurements are promising new Physics

Thanks for your attention & Greetings from Perugia !