

Laboratoire d'Annecy-le-Vieux
de Physique des Particules

Source production at LAPP

J.M.Dubois, D.Duchesneau,
A.Jeremie, A.Remoto

For a good source, we need:

- Selenium
 - Grinding (U.Texas has shown it's difficult). This has not been pursued lately.
 - Produce powder directly after purification. This can be done in Idaho, Dubna or Modane : need to decide soon by taking into account time constraints and the geographic proximity between Modane and Annecy.
- Backing system
 - Baseline ITEP System looks good/practical , but radiopurity issue
 - U.Texas is testing some wire/mesh: interesting results
 - LAPP is testing Tulle: promising results
- Radiopurity
 - PVA (powder and film) has been measured
 - Tests for film/wire/Tulle will be done soon
 - Tests after Se purification still need to be programmed
- Frame (LAPP not involved)

Possible «alpine» scheme (to be discussed)

- Get Se isotope at Modane
- Purify Se at Modane
- Precipitate to powder at Modane
- Prepare dedicated 3m long support in Annecy
- Transport Isotope powder or liquid to Annecy (need special packaging?)
- Pour liquid mixture onto support (with Annecy Tulle or Texas mesh)
- Let dry for a day
- Peel off Source foil
- Put into transport box (probably 3m long, not as flexible as ITEP foil)
- Send to BiPo for Radiopurity measurements
- Transport to Modane & Install into demonstrator

Cleaning à la « Gerda »

- January, cleaning plant installation

Cleaning Procedure

- For stainless steel:
 - Wipe clean with acetone
 - Degrease in a biological bath (Bio-Circle™L at 41°C)
 - decomposition of incorporated oil by microorganisms
 - Rinse with tap water then distilled water
 - Ultrasonic bath in basic solution at 80°C
 - 5% highly concentrated grease-solving base (Tickopur R33)
 - Rinse with distilled water
 - Ultrasonic bath in distilled water
 - Removes the base residue
 - Drying in furnace at 100°C
 - Samples stay there until extraction and packaging
 - Package in food-grade cling film (wearing gloves)
- Entire procedure carried out in class-1000 clean room
 - Takes about 1.5 hours per batch of components.
- Procedure developed by GERDA ($0\nu\beta\beta$ search at Gran Sasso)
 - See Maneschg et.al NIM A593 (2008) 448-453.

Implementation plan at LAPP

All items ordered, some have been delivered

Bioclean fountain

Tap
water
rinsing

Ultrasonic
bath

Tickopur R33 and/or
distilled water

Table for
clean
packaging in
« food
grade » Zip-
lock bags or
film

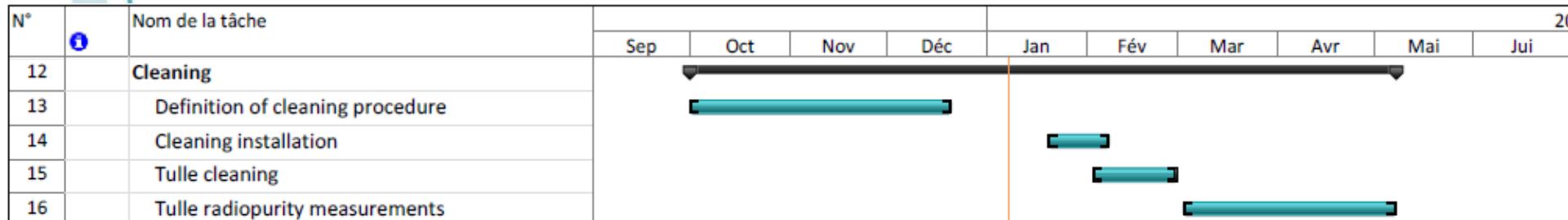
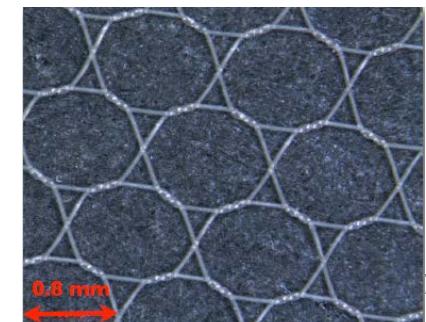

Table under laminar
flow

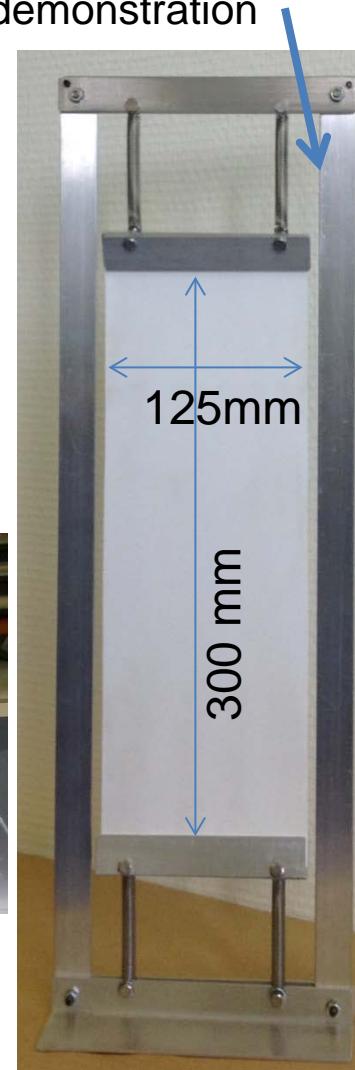
Table for laboratory material

Class 6-5 (1000 or 100) clean room



Timeline

- Time is short! => radiopurity measurement availability critical!
- If we measure Tulle in HPGe and BiPo at the same time, we can have an answer about the Tulle Radiopurity by the end of April.
- Then a test with Natural purified Se on Tulle should be done in BiPo before final Demonstrator foil production


What we tested so far

- Fishing wire with PVA
 - Not pursued at LAPP
- Florist Tulle (for free)
 - Used for preliminary tests
 - Similar to the baseline Tulle (except for quality and price)
- Bobbinet Tulle (not for free!)
 - Just set to dry, no chemicals nor glues
 - =>More expandable: issue under study

Source foil preparation procedure

- We used Al_2O_3 powder with 15 micron grains.
- Prefer Teflon, Delrin... : closest to final production protocol
- Procedure
 - Heat water to about 80°C
 - Mix with PVA powder for a few minutes until no flakes seen, let cool
 - Add powder. Keep stirring to avoid powder settlement
 - Pour on Tulle in dedicated support: no bubbles or very few
 - Let dry for a night until water has evaporated with heating lamp (lamp will not be used for Se)
 - Peel foil with embedded Tulle
- Result with Florist Tulle
 - Doesn't "twirl"
 - Powder distribution visually OK
 - Easy handling with Tulle
 - Thickness 120-150 microns with 10% homogeneity (with caliper)

Parameters used in tests

PVA: low ash Mowiol 4-88 by Kuraray

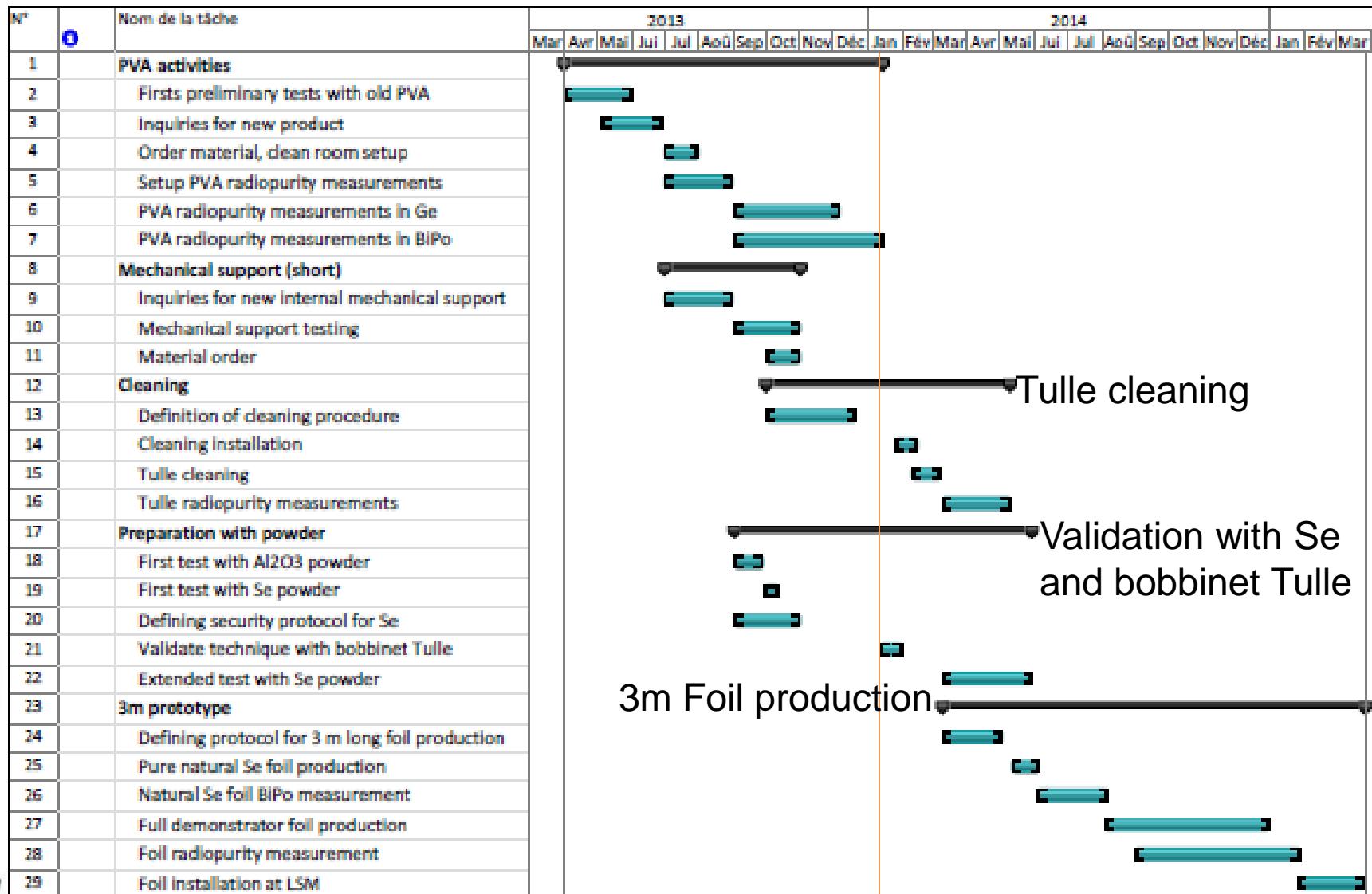
H_2O : distilled water for tests

Al_2O_3 : 15 micron size grains, density 3,95g/cm³

Component	Value	Comment
Powder mass	50mg/cm ²	SuperNEMO design
PVA	2g	
H_2O	30g	Not much influence on final foil mass
Al_2O_3	18g	
PVA/powder	10/90	Powder stays in place
Surface	300x125mm ²	

PVA powder for source foil

- sample prepared by A. Jérémie (LAPP) in big Marinelli n°2
- Final measurement performed at LSM during 26 days


Sample	Mass (g)	Time (h)	HPGe Detector	^{40}K (mBq/kg)	^{214}Bi (mBq/kg)	^{208}Tl (mBq/kg)
Marinelli n°2 only (Delrin)	1039	211	Jasmin	30 ± 9	2.0 ± 0.8 (609 keV)	1.2 ± 0.7
PVA powder with subtraction of the Marinelli2 activity	1485	626	Jasmin	<5.3	<0.35	<0.12

- Preliminary contamination in ^{214}Bi reported at Bratislava collaboration meeting was coming from the Marinelli itself .

→ **PVA powder has a very good radiopurity from HPGe point of view.**

→ **To be compared with the BiPo results**

Timeline

Collaborative Source Production

F.Piquemal Bratislava October 2013

To succeed:

- No compromise with radiopurity of materials
- No impasse
- Discussion with experts at any moment in case of doubt
- Exchanges with the collaboration when a problem appears
- Role of the collaboration is to find solution all together, we are in the same boat

=> A collaborative organisation suggested by Alberto Remoto (LAPP) and Federico Nova (U.Texas) and concrete actions have been taken :

- December 6 2013 :telephone meeting between Texas and LAPP on backing solutions tested and exchange of results
- December 18/20 1013: meeting with Se purification experts from Modane and Dubna
- January 17 2014: show and tell meeting in Annecy between Texas and LAPP (you are all invited).
- Regular phone meetings will be organised.
- Mailing list dedicated to Foil Production should be set up including Texas, LAPP, ITEP and radio-purity experts

Conclusion

- Time and resources are scarce! => need to work in a collaborative and efficient manner if we want data next year
- At LAPP, in the past 3 months, we succeeded in producing good source foil samples (with Al_2O_3 and test Tulle)=> promising
- LAPP program for the coming months:
 - Continue tests with Tulle/Mesh and Se
 - Cleaning plant will be ready in a few weeks
 - Tulle radiopurity to be validated: need to measure at the same time in HPGe and BiPo!
 - If pure Se powder can be produced « chemically » directly without grinding: great time saving! No more grinding R&D needed.
 - Decide soon on the Se Isotope flow path
 - As foreseen today, the Source Foil installation can be done early Spring 2015 (difficult before...).