LHC_7 R&D for ATLAS Grid Computing

L. Poggioli, LAL Orsay on behalf of the LHC_7 project team

LHC_7: R&D for ATLAS Grid Computing

- Basis
 - Successor of project LHC_2: "ATLAS computing" (2006~ 2012)
 - Cooperation between French and Japanese teams in R&D on ATLAS distributed computing to prepare LHC Run-2 (2015-2018)
- Goal
 - Important challenges of the next years: New computing model, hardware, software, and networking issues
- Partners
 - The International Center for Elementary Particle Physics (ICEPP), the University of Tokyo (WLCG Japanese Tier-2 center) and French Tier-2 centers

TYL/FJPPL&FKPPL, 2014

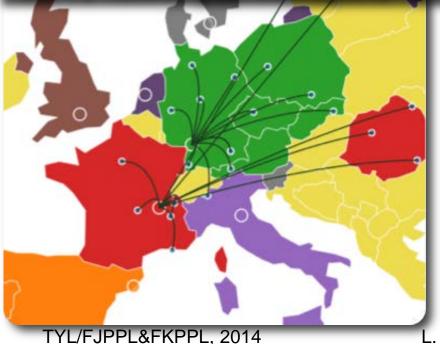
L. Poggioli

LHC_7 Members

French group	Lab	Japanese group	Lab
E. Lançon*	IRFU	T. Mashimo*	ICEPP
L. Poggioli	LAL	I. Ueda	ICEPP
R. Vernet	CC	T. Nakamura	ICEPP
M. Jouvin	LAL	N. Matsui	ICEPP
S. Jézéquel	LAPP	H. Sakamoto	ICEPP
F. Chollet	LAPP	T. Kawamoto	ICEPP
E. Vamvakopoulos	CC		
JP. Meyer	IRFU		

2010 Evolution 2013

Network performance breakthrough (eg LHCONE 2011)


- Going away from hierarchical Model (T0-T1s-T2s)
- Dynamic data placement & deletion based on popularity
- T2→N-T1s & T2↔T2 exchanges (T2D)

Planned data distribution

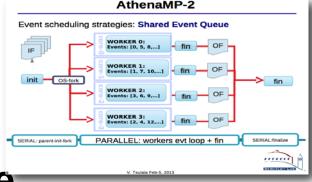
Jobs go to data

Multi-hop data flows

Poor T2 netwking across regions

Planned & dynamic distribution data Jobs go to data & data to free sites Direct data flows for most of T2s Many T2s connected to 10Gb/s link

Run-2 (2015-2018) Challenges


- LHC operation
 - Trigger 1 kHz / Pile-up
 > 30/ 25ns bunch
 spacing / energy x 2
- 'New' detector
 - To be integrated in simul & reco
- New CPU architecture
 - Clock speed saturates
 - Less memory/core

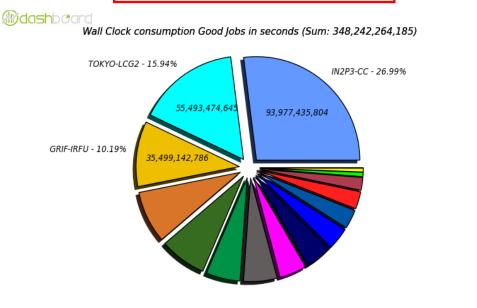
Resources optimization is crucial (CPU/storage)

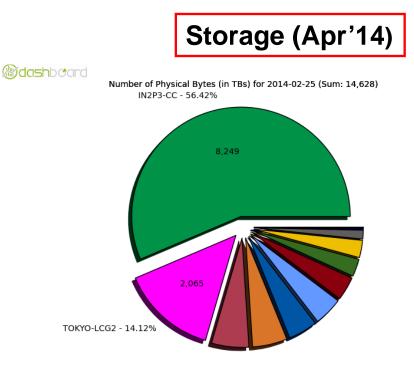
- Flat budget constraints
 - Both for h/w & operation
 & dev't
- Challenges
 - More & bigger data to process/store
 - More simulation (w/ more memory& CPU) to process/store

Working towards solutions

- Simulation: CPU: More usage of fast simulation
- Reconstruction: Memory & CPU
 - Parallelism, code speedup
 - MP solution to reduce memory footprint

- New Analysis Model: CPU & Storage
 - Common analysis data format/ Streamlining analysis flow
- New production system CPU & Network
 - Data traffic minimized / Optimized job to resource matching/Better reaction to analysis loads
- Data management Storage & Network
 - Develop tape usage/ agressive deletion on non-popular data
- Opportunistic resources CPU: HPC, Cloud, HLT TYL/FJPPL&FKPPL, 2014 L. Poggioli 6


Network potential & usage


- Networking continue its progress
 - LHCONE breakthrough (2011). 10Gb/s for big sites
 - x10 every 4.25 yrs RENATER devt@400Gb/s!
 - Aim at 40/100Gb/s for T1s/T2Ds by Run-2?
- 2 interesting ATLAS initiatives ongoing
 - Data federation (FAX, xrootd fed., http fed.)
 - Remote file access over WAN
 - Break the paradigm: Jobs go to data
 - Event Service: passing single evts for processing from/to storage cf. ATLAS@home

Can optimize our disk space & CPU needs

ATLAS GRID French-cloud

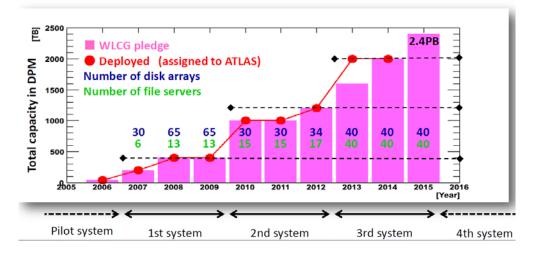
CPU (Apr'13-Apr'14)

■ IN2P3-CC - 26.99% (93.977,435,804) ■ IN2P3-CC-T2 - 8.14% (28,343,530,669) ■ IN2P3-LPC - 5.25% (18,271,553,887) ■ IN2P3-LPSC - 3.51% (12,232,922,222) ■ RO-16-UAIC - 1.99% (6,922,302,669) ■ IN2P3-CC-T3 - 0.03% (91,688,160) TOKYO-LCG2 - 15.94% (55,493,474,645)
 IN2P3-CPPM - 7.30% (25,423,897,475)
 RO-07-NIPNE - 4.25% (14,786,070,930)
 GRIF-LAL - 2.99% (10,401,133,114)
 RO-14-ITIM - 0.66% (2,309,360,851)

GRIF-IRFU - 10.19% (35,499,142,786) GRIF-LPNHE - 5.35% (18,615,421,291) IN2P3-LAPP - 4.13% (14,375,523,435) BEIJING-LCG2 - 2.72% (9,483,385,188) RO-02-NIPNE - 0.58% (2,015,421,059)

IN2P3-CC - 56.42% (8,249)
 GRIF-LPNHE - 4.30% (629.00)
 GRIF-LAL - 2.55% (373.00)
 RO-16-UAIC - 0.03% (4.00)

TOKYO-LCG2 - 14.12% (2,065)
 IN2P3-CPPM - 4.24% (621.00)
 RO-07-NIPNE - 1.29% (189.00)
 RO-14-ITIM - 0.00% (0,00)

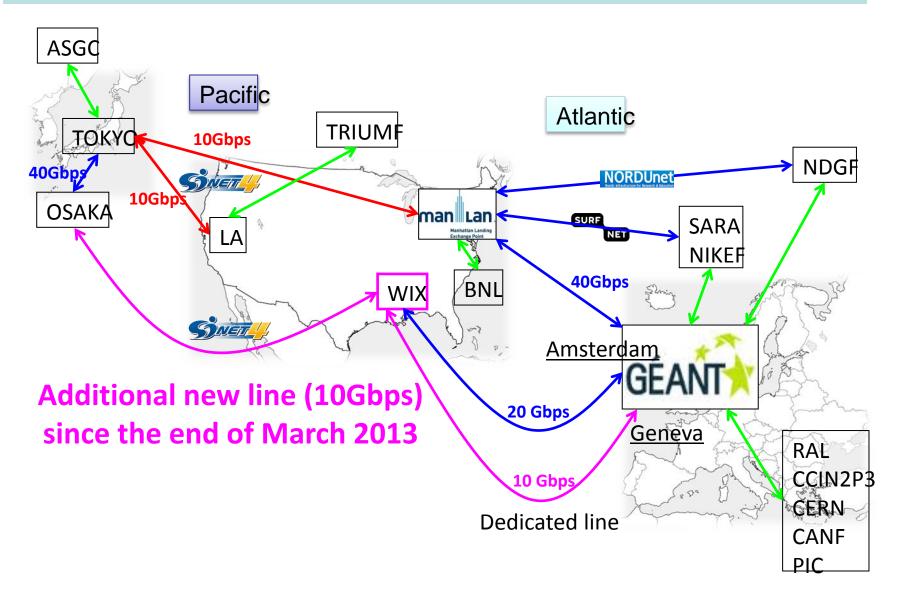

GRIF-IRFU - 5.52% (807.00) IN2P3-LPC - 3.51% (513.00) RO-02-NIPNE - 0.25% (36.00) IN2P3-LAPP - 5.14% (752.00)
 IN2P3-LPSC - 2.61% (381.00)
 BEIJING-LCG2 - 0.07% (11.00)

Biggest contributors: IN2P3-CC (Tier-1/Tier-2: 35%), Tokyo (Tier-2: 16%), GRIF(3xTier-2: 18%)

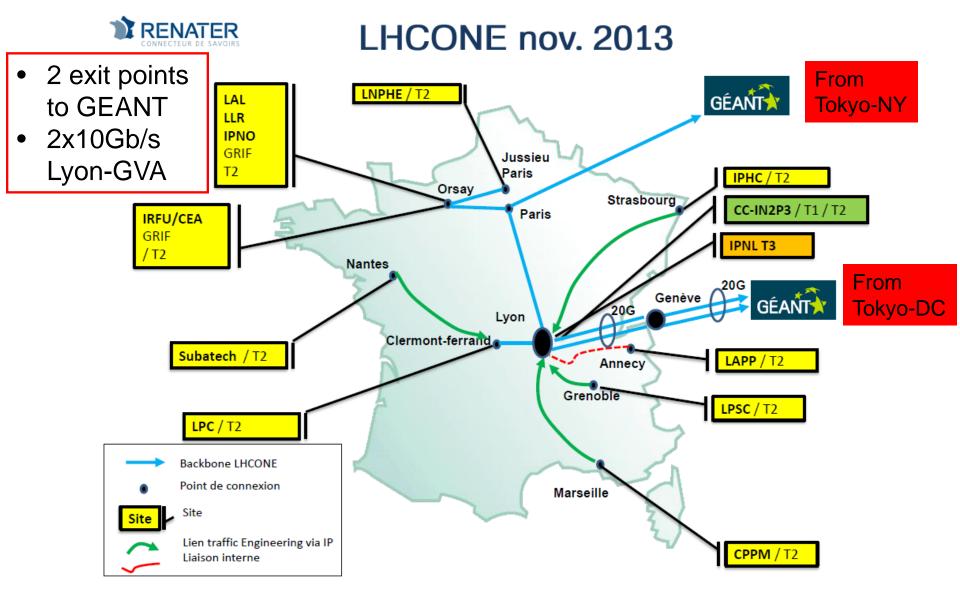
TOKYO Tier-2

WLCG pledge 2013 2014 2015 CPU 20000 16000 24000 pledge [HS06] [HS06] 46156.8 43673.6 CPU [HS06-SL5] [HS06-SL6] deployed (2560core) (2560core) Disk 1600 [TB] 2000 [TB] 2400 [TB] pledge Disk 2000 [TB] 2000 [TB] deployed

Evolution of disk storage capacity for Tier2


Pledges

- Provided CPU above pledges in 2013
- Net increase for 2014
- I/O study
 - Direct access via Xrootd
 - SSD vs HDD tests
- Batch
 - Deployment of Multi-core queue ongoing


TYL/FJPPL&FKPPL. 2014

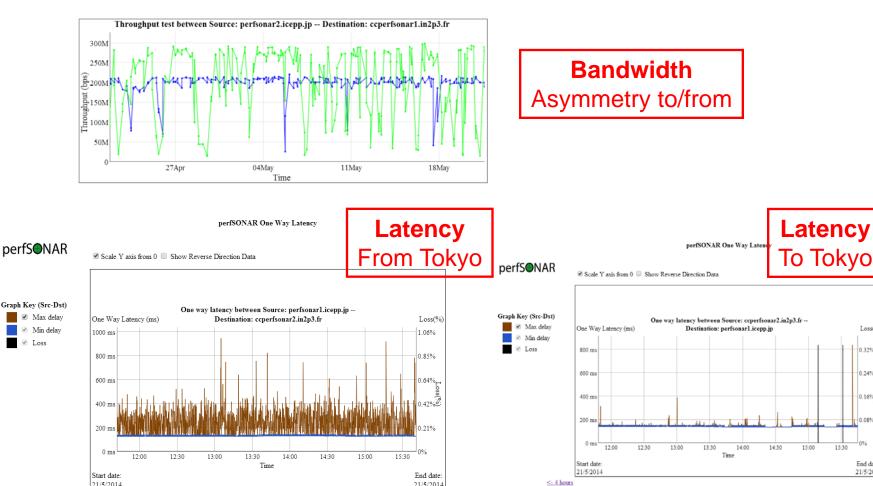
L. Poggioli

WAN for TOKYO

From Tokyo to France

Transfers Tokyo (May'13-May'14)

TYL/FJPPL&FKPPL, 2014


L. Poggioli

Network monitoring: perfSonar

Tokyo-IN2P3-CC Channel

perfSONAR BWCTL Graph

perfS**O**NAR

Timezone: (heure d'été))

TYL/FJPPL&FKPPL, 2014

21/5/2014

<- 4 hours

21/5/2014

15:30

15:00

Loss(%)

0.32%

0.24%

0.16%

0.08%

End date

21/5/2014

LHC_07: Lines for R&D

- Tokyo is the biggest & remote T2 in FR-cloud

 Crucial to understand issue & to follow
 developments (network, data acces,...)
- Lines for R&D
 - Multi-core developments
 - Cloud/Virtual computing
 - Xrootd/http federated storage
 - General I/O studies
 - Batch studies
 - Batch system/ Multicore/ High memory queues
 - Network studies: The most important & critical
 - Use of perfSonar tool
 - Optimization and monitoring of data transfer between remote sites

Cost of the project

- Cost for hardware not needed
 - Use of existing computing facilities at Tier-1 and Tier-2s in France and Japan and of existing network infrastructure provided by NRENs, GEANT...
- Good communication is the key issue
 - e-mails and video-conferences are widely used
 - eg Monthly LCG-TECH meetings
 - Face-to-face meetings are essential usually 1/year (a small workshop), hence cost for travel& stay
 - ATLAS Distributed Computing Technical Interchange Meeting Tokyo, May 2013
 - Regional FR-cloud workshop, Tokyo, December 2013
 TYL/FJPPL&FKPPL, 2014
 L. Poggioli 15

Budget plan for 2014 (for completeness)

Item		€	Suppor t-ed by	Item		k¥	Support -ed by
Travel	1,000			Travel	160		
Nb travels	3	3,000	IN2P3	Nb travels	3	480	ICEPP
Per-diem	230			Per-diem	22.7		
Nb days	15	3,450	IN2P3	Nb days	12	272	ICEPP
Nb Travels	1	1,000	IRFU				
Nb days	5	1,150	IRFU				
Total		8,600				752	

Summary

- LHC_7
 - Very fruitful collaboration between ICEPP & IN2P3/IRFU ATLAS computing centers
 - Need to maintain it, eg with regular exchanges & workshops
- Fields of study
 - Use of virtual machines for WLCG services ops
 - Improvement of DPM storage reliability
 - Performance of data access for analysis jobs
 - Investigation of federated Xrootd storage
 - Optimization and monitoring of data transfer