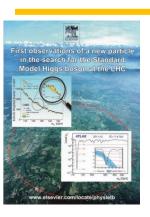


Workshop on France-Japan and France-Korea Particle Physics Laboratories


Continuation of the LHC-06 project:

Improvement of the τ jet measurement applied to the low mass Higgs search in ττ

Koji Nakamura (KEK)

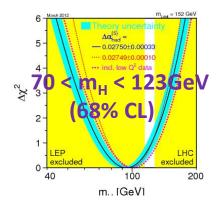
K. Nakamura, K. Tokushuku, S. Tsuno (KEK)
M. Ayoub, F. Hariri, M. Jaffré, <u>P. Pétroff</u>, L. Poggioli, D. Rousseau, R. Tanaka (LAL)
R. Fuchi, <u>K. Hara</u>, S. Kim (Tsukuba HEP)

Introduction

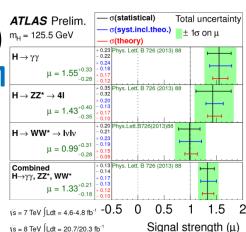
Phys.Lett. B716 (2012) 1-29

"These results provide conclusive evidence for the discovery of a new particle with mass 126.0 ± 0.4 (stat) ±0.4 (sys) GeV."

What is "new particle"?


Spin Parity:

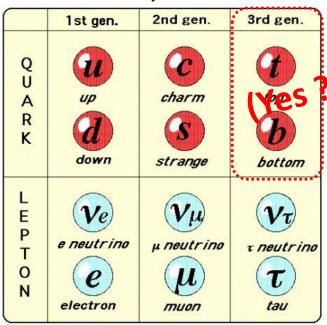
Mass:

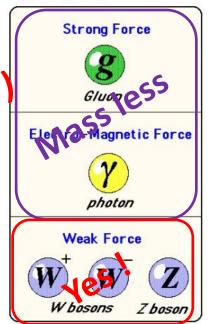

 $125.5 \pm 0.2 (stat) \pm 0.6 (sys) GeV$

Consistent to scalar $(J^P=0^+)$

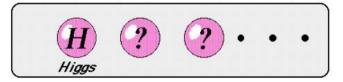
 $J^{P}=0^{-}$, 1⁺, 1⁻, 2⁺ were excluded.

Production and Decay (coupling)
No significant deviation from SM


The particle should be a Higgs boson

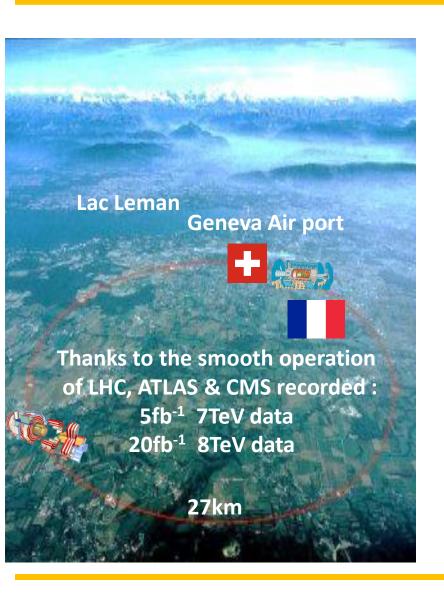

Origin of mass

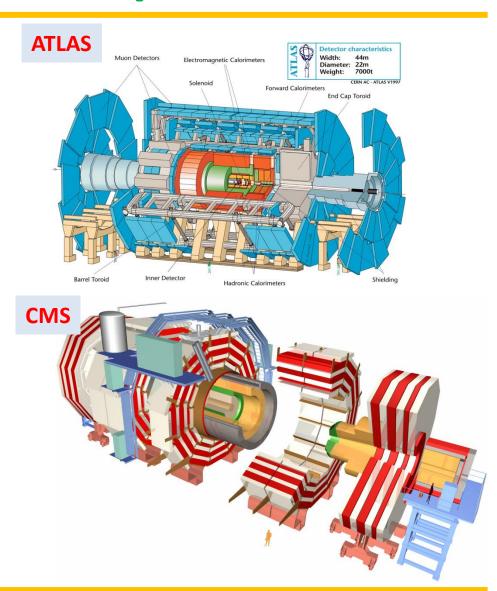
Particles are given the mass by H?


matter particles

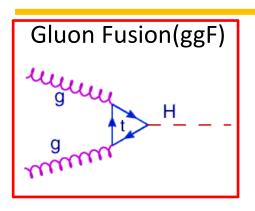
scalar particle(s)

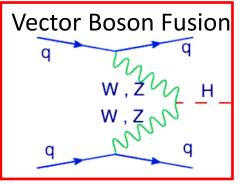
Elements of the Standard Model

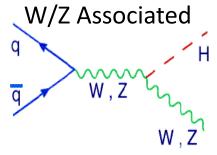

- Only W/Z boson For sure
 - Direct observation of
 H→WW/H→ZZ Decay
- Probably Quark
 - gg→H production would not exist w/o quark loop.
 - H→bb
 - Tevatron (2.8σ)
 - CMS (2.1σ)
 - ATLAS (0.4σ)

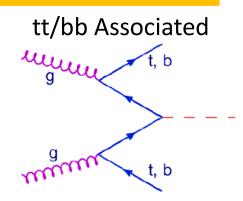

 3σ in combination??

- How about leptons?
 - No evidence including indirect measurement

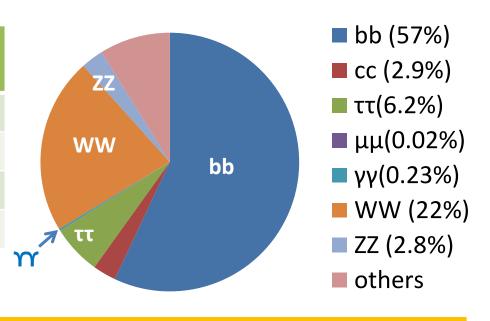



LHC and ATLAS experiment



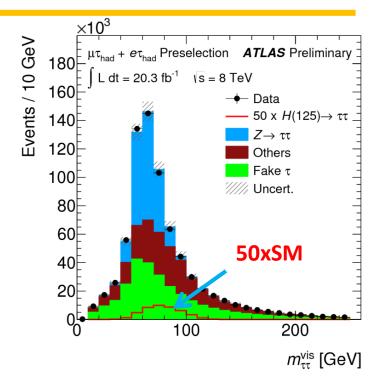


Higgs production and decay @ LHC

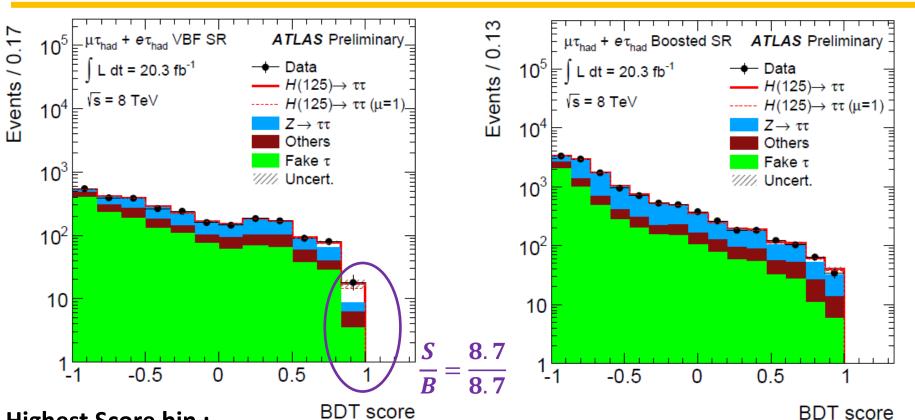


@125.5GeV

Now we know the cross section and Branching ratio!

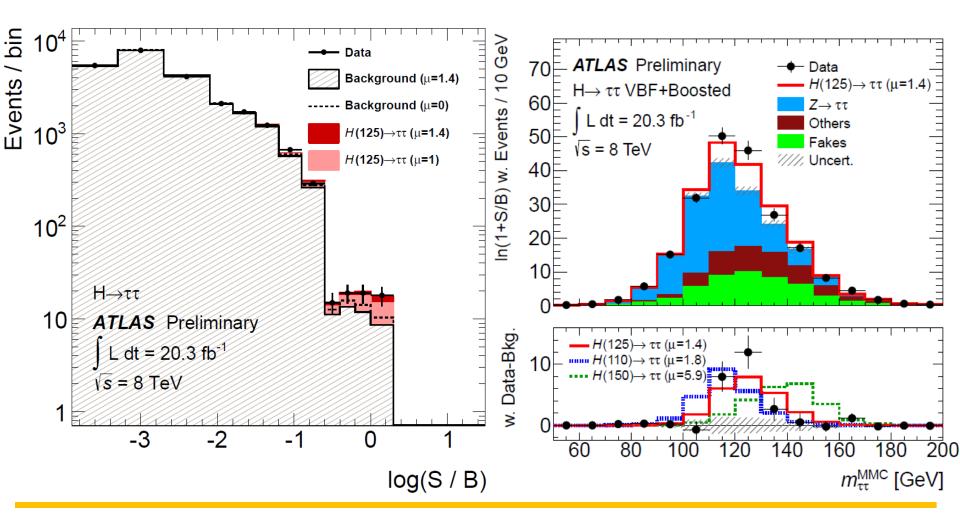

14TeV **Process** 8TeV σ [pb] σ [pb] **Gluon Fusion** 19.1 49.9 **Vector Boson Fusion** 4.18 1.57 2.39 W/Z Associated 1.11 tt/bb Associated 0.128 0.611

> 8TeV @125.5GeV 14TeV @125GeV


Analysis strategy

- After di-tau candidate, S/B ratio is <0.001, while typical systeamtics of backgrounds are ~20%.
- Categorize events to (leplep/lephad/hadhad)X(VBF/Boost)
- Used MVA technique to separate signal from background. (Used MVA score as discriminant.)
- Majority of Backgrounds are estimated by data-driven way.
 - Z→ττ estimated by Z→μμ data replaced
 μ→τ
 - Z → ee/μμ + jets, Top, di-boson Estimated by MC with correction.
 - QCD and W+Jets Data driven estimation for both shape and Normalization.

Result:BDT distribution in lephad SR

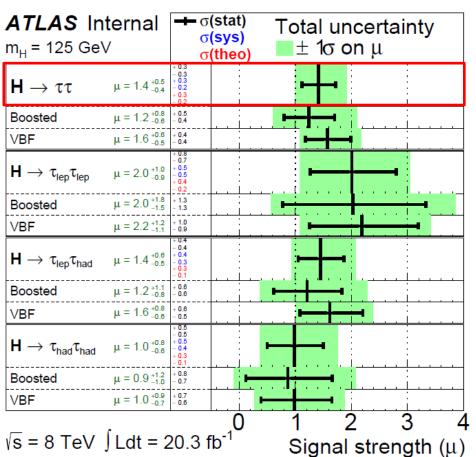


Highest Score bin:

	ggF	VBF	VH	Ζ→ττ	Fake	Тор	Others	S/B
VBF	1.2±0.6	7.5±2.2		2.4±0.4	3.5±0.5	1.5±0.4	1.3 ± 0.7	1.0
boosted	5.5±2.1	1.3 ± 0.4	1.2±0.3	18±2	5.8±1.4	2.2±0.3	5.5±1.2	0.25

Summary plots

- Event yield as a function of log(S/B) for all signal region BDTscore-bins.
- MMC distribution where events are weighted by In(1+S/B).



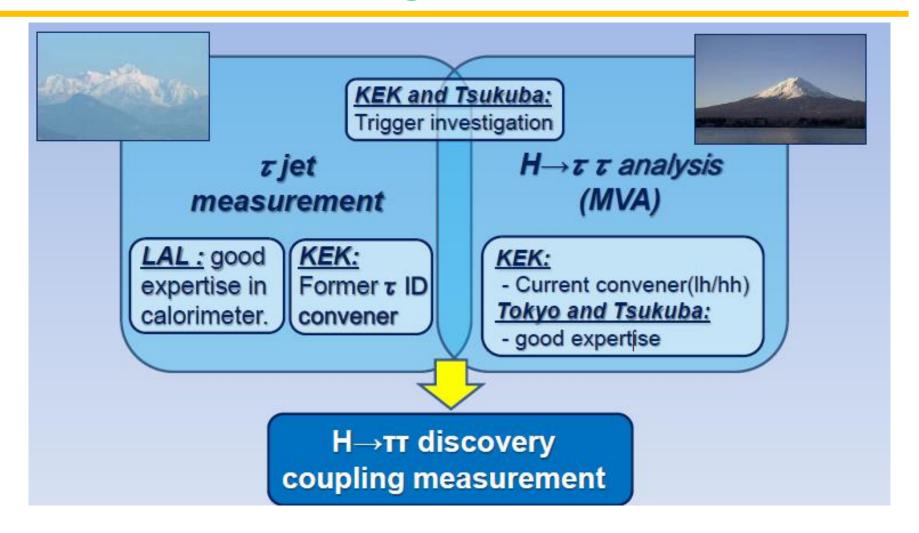
Conclusion: Significance and Signal strength

For mH=125GeV,

Evidence of H → ττ decay!

$$p_0^{\text{exp}} = 6.2 \times 10^{-4} \text{ (3.2s)}, \ p_0^{\text{obs}} = 1.9 \times 10^{-5} \text{ (4.1s)}$$

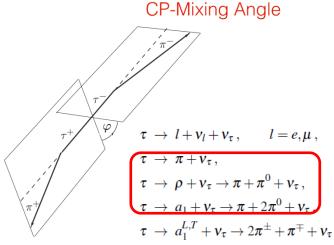
Assuming mH=125GeV:

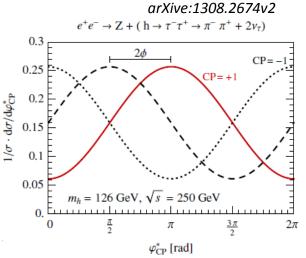

 μ_{best} =1.4+0.5-0.4

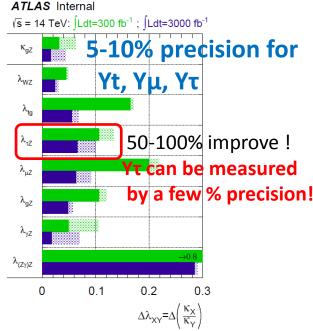
Impact of uncertainty sources

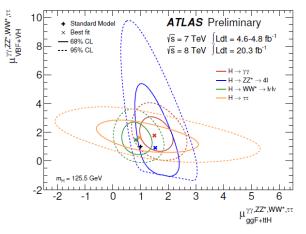
Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	0.30
$Z \to \ell\ell$ normalization ($\tau_{\rm lep} \tau_{\rm had}$ boosted)	0.13
ggF $d\sigma/dp_T^H$	0.12
JES η calibration	0.12
Top normalization ($\tau_{\text{lep}}\tau_{\text{had}}$ VBF)	0.12
Top normalization ($\tau_{\text{lep}}\tau_{\text{had}}$ boosted)	0.12
$Z \to \ell\ell$ normalization $(\tau_{\text{lep}}\tau_{\text{had}} \text{ VBF})$	0.12
QCD scale	0.07
di- $ au_{ m had}$ trigger efficiency	0.07
Fake backgrounds $(\tau_{\text{lep}}\tau_{\text{lep}})$	0.07
$ au_{ m had}$ identification efficiency	0.06
$Z \to \tau^+ \tau^-$ normalization $(\tau_{\text{lep}} \tau_{\text{had}})$	0.06
$ au_{ m had}$ energy scale	0.06

Sharing the work




PhD: F. Hariri (LAL), M. Ayoub (LAL), R. Fuchi (Tsukuba)


Next Step in tautau analysis


- Writing paper for "this result + 7TeV analysis".
- Improve measurement of Y_{τ} in 13/14TeV data (with better VBF-ggF separation)
- Measure mass by ττ to confirm if ττ is from the same Higgs boson as the other cannels. → Need better tau-energy measurement.
- CP mixing angle (CP even/odd) can be proved by $\tau\tau$ spin correlations. \rightarrow Need better id (π^0 counting)

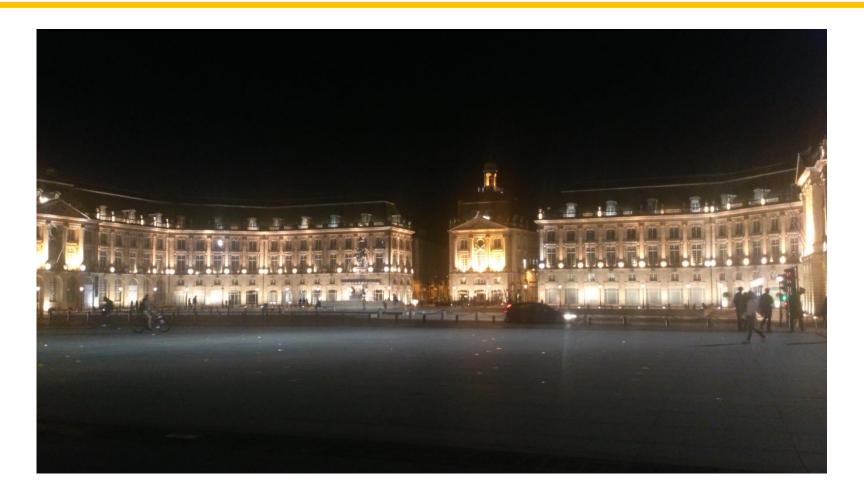
$$\mathcal{L}_Y = -N(\cos(\phi)\bar{\tau}\tau + \sin(\phi)\bar{\tau}i\gamma_5\tau)h$$

τ jet measurement is still quite important task:

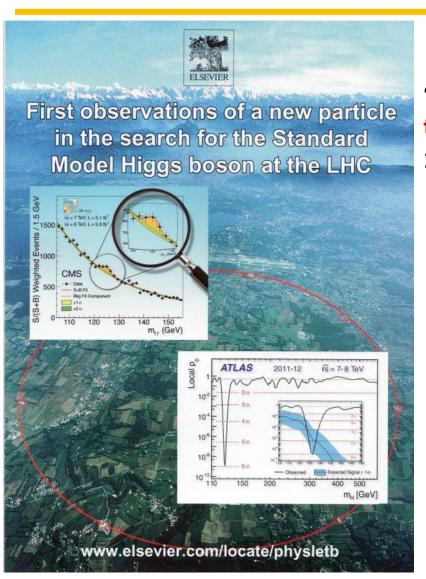
"LHC_6: Improvement of the τ jet measurement applied to the low mass H Higgs search in ττ channel"

Summary of the 2014-2015 Project

- 1- The selection of hadronic τ decays proceeded by requiring one or three prongs in the τ while two prongs decays are rejected. This results in a lack of efficiency if a photon in the π⁰ decay is converted to an electron-positron pair with one of the two tracks measured by the tracker and inside the τ cluster cone. A first very promising study indicates that a non negligible τ decays could be recovered by selecting two prongs and identifying one of the prongs as coming from a photon conversion.
- 2- The group continues working on the improvement of the τ-id as well as tau energy scale by using the energy flow techniques. This technique will become more and more challenging with the increase of luminosity.
- 3- The group continues investigating the τ trigger optimum for the coming 13-14 TeV run at higher luminosities.


The KEK, Tsukuba HEP and LAL Orsay groups are very complementary to fulfill successfully the working program described above

Budget


```
IN2P3 (euros): 8000 (800K yen):
3 month stay of a student at LAL, meeting + travel
KEK (yen): 300K (3000 euros):
meeting + travel
Tsukuba HEP (yen): 1140 K (11,400 euros):
Travel to attend this workshop
Short stays in France + travel
```

For more details, report to the LH06 written proposal

Thank you!

Observation of a new Boson

Phys.Lett. B716 (2012) 1-29

"These results provide conclusive evidence for the discovery of a new particle with mass 126.0 ± 0.4 (stat) ±0.4 (sys) GeV."

What is "new particle"?

Observation of a new Boson

Phys.Lett. B716 (2012) 1-29

"These results provide conclusive evidence for the discovery of a new particle with mass 126.0 ± 0.4 (stat) ±0.4 (sys) GeV."

What is "new particle"? The Nobel Prize in Physics 2013

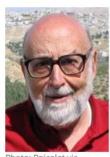
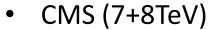
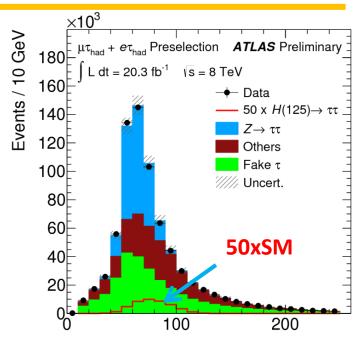


Photo: Pnicolet via Wikimedia Commons François Englert

Photo: G-M Greuel via Wikimedia Commons Peter W. Higgs

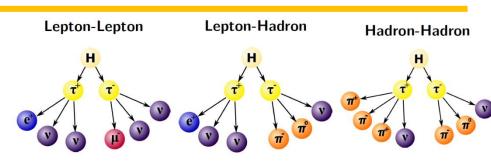

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

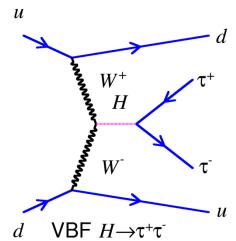
Why is H \rightarrow tt difficult? How to improve?


After di-tau candidate, S/B ratio is <0.001, while typical systeamtics of backgrounds are ~20%.

Quite different approaches were taken by ATLAS and CMS

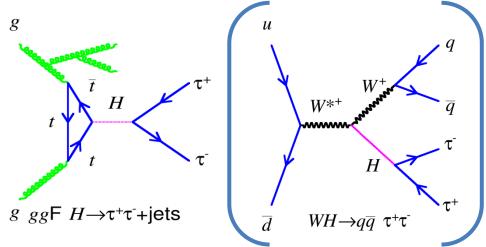
- ATLAS (8TeV)
 - Used very simple categorization (6 categories)
 - Used MVA technique to separate signal from background. (Used MVA score as discriminant.)


- Split data to many categories(>50 categories) based on S/B ratio.
- Used Cut based analysis. (Used Mass as discriminant.) except ee and μμ channel (MVA analysis).


 $m_{ au au}^{ ext{vis}}$ [GeV]

Analysis channels

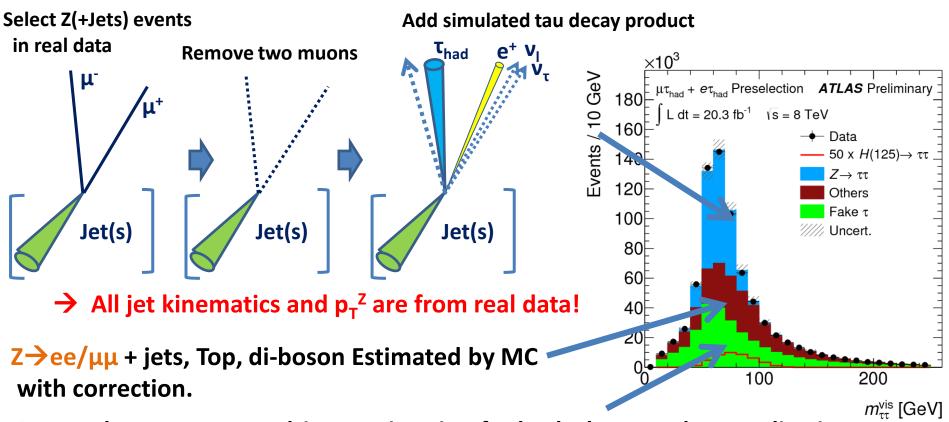
- Analysis was optimized for each ditau decay mode.
 - Different trigger, object selection and backgrounds.
- Categorize events to 2 category.



VBF category

- Find VBF jets with loose selection.
- Train BDT for VBF signal.

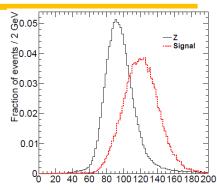
Boosted category



- Select events with high vector sum pT of tautau decay products.
- Not included non-boosted events.

Background estimation overview

Most important background is Z→ττ (irreducible).


Z→ττ estimated by embedding method

QCD and W+Jets - Data driven estimation for both shape and Normalization.

BDT input variables

- Trained BDT separately for 3 channels and VBF/Boosted. (total 6 categories)
 - 125GeV signal MC for the signal template.
- $MMC(m_{rr})$ is also included as one of the most powerful variable for the training.

VBF category

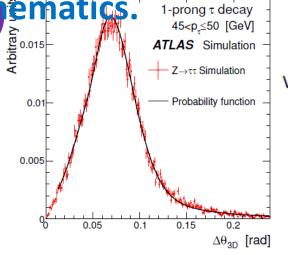
Variable	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$M_{ au au}^{MMC}$	•	•	•
$\Delta R_{ au au}$	•	•	•
$ \eta_{j2}-\eta_{j1} $	•	•	•
$m_{j1,j2}$	•	•	•
$\eta_{j1} \times \eta_{j2}$		•	•
$ ho_T^{ m Total}$		•	•
$E_T^{miss}\phi$ centrality		•	•
$\mathit{min}(\Delta\eta_{\ell1\ell2,jets})$	•		
$\ell 1 imes \ell 2$ η centrality	•		
$\Delta \eta_{j3,j1j2}$	•		
m_T		•	
$\ell \; \eta$ centrality		•	
$ au_1$ η centrality			•
$ au_2$ η centrality			•

Boosted category

٨	MMC mass $m_{\tau\tau}$ [GeV]						
	$ au_{ m had} au_{ m had}$						

	,		
Variable	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$M_{ au au}^{MMC}$	•	•	•
$E_T^{miss}\phi$ centrality	•	•	•
$\Delta R_{ au au}$		•	•
sum P_T		•	•
$P_T(au_1)/p_T(au_2)$		•	•
$m_{ au au,j1}$	•		
$m_{\ell 1,\ell 2}$	•		
$\Delta\phi_{\ell1,\ell2}$	•		
sphericity	•		
$ ho_T^{\ell 1}$	•		
$ ho_T^{j1}$	•		
$E_T^{miss}/p_T^{\ell 2}$	•		
m_T		•	
$ au_{1_X}$			•
$ au_{2x}$			•
	$\begin{array}{c} \text{Variable} \\ \hline M_{\tau\tau}^{MMC} \\ E_T^{miss} \phi \text{ centrality} \\ \Delta R_{\tau\tau} \\ \text{sum } P_T \\ P_T(\tau_1)/p_T(\tau_2) \\ m_{\tau\tau,j1} \\ m_{\ell 1,\ell 2} \\ \Delta \phi_{\ell 1,\ell 2} \\ \text{sphericity} \\ p_T^{\ell 1} \\ p_T^{j_1} \\ p_T^{j_1} \\ E_T^{miss}/p_T^{\ell 2} \\ m_T \\ \tau_{1x} \end{array}$	$\begin{array}{c c} \text{Variable} & \tau_{\mathrm{lep}}\tau_{\mathrm{lep}} \\ \hline & M_{\tau\tau}^{MMC} \\ E_T^{miss}\phi \text{ centrality} \\ & \Delta R_{\tau\tau} \\ \text{sum } P_T \\ P_T(\tau_1)/p_T(\tau_2) \\ & m_{\tau\tau,j1} \\ & m_{\ell 1,\ell 2} \\ & \Delta \phi_{\ell 1,\ell 2} \\ \text{sphericity} \\ & p_T^{\ell 1} \\ & p_T^{j_1} \\ & p_T^{j_1} \\ & E_T^{miss}/p_T^{\ell 2} \\ & m_T \\ & \tau_{1x} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Di-tau Mass reconstruction

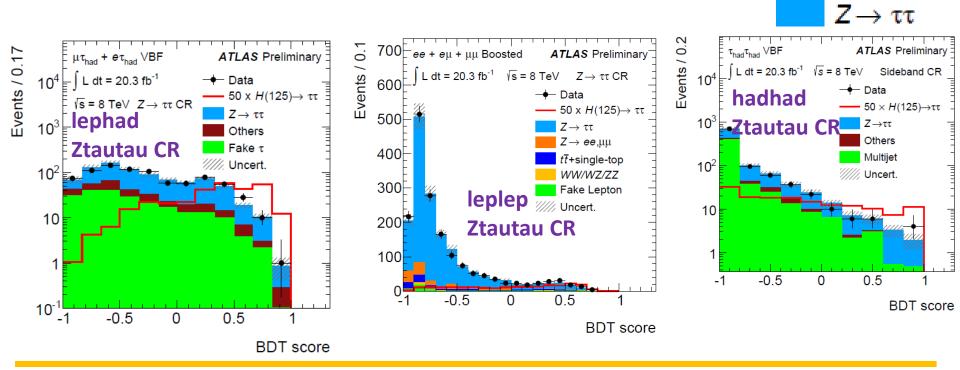

Di-tau invariant mass should be an important discriminating variable from backgrounds. But having 2-4v in a event.

Need...

Event by Event estimator of true di-τ mass likelihood.

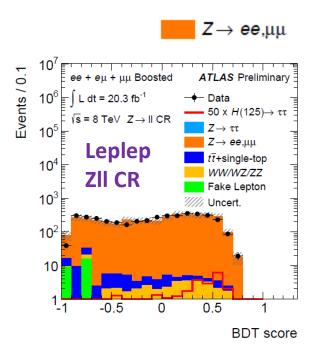
Emising oversty eticulation and the second of the second o

• Solve τ , E_T^{miss} in $\Delta \varphi(\tau_{vis}, v)$ parameter space using $\Delta \theta_{3D}(\tau_{vis}, v)$ template from simulation as PDF.


CMS uses the similar method with Matrix element

Background estimation and validation

NOTE: MVA(BDT) analysis has to be validated carefully:


if all training variables are modeled well. → checked OK for each. if all variable correlations are also modeled.

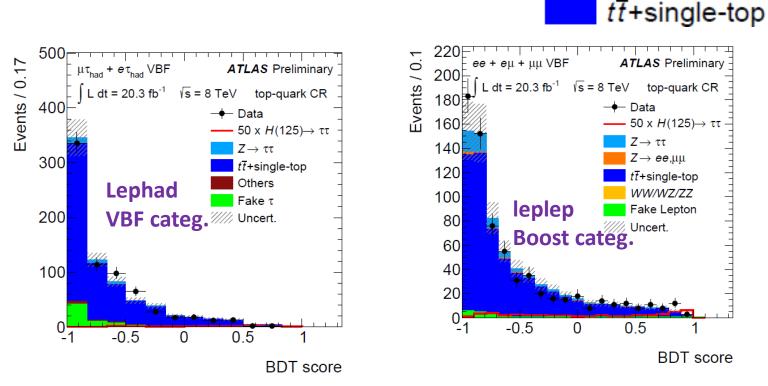
- → checked BDT score for each background CR.
- E.g. $m_{\tau\tau}$ sideband CR as Z \rightarrow tautau validation region

Background estimation and validation

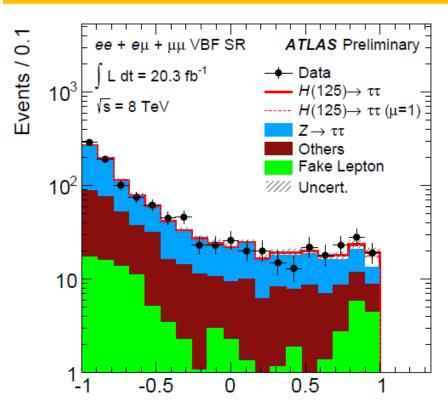
 Z→II CR (mII~mZ) for leplep channel

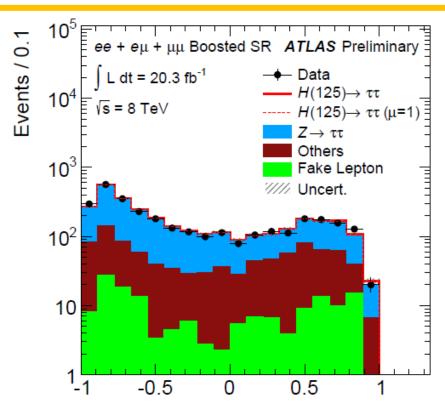
W+jets & QCD CR

Fake τ


lephad (high mT)

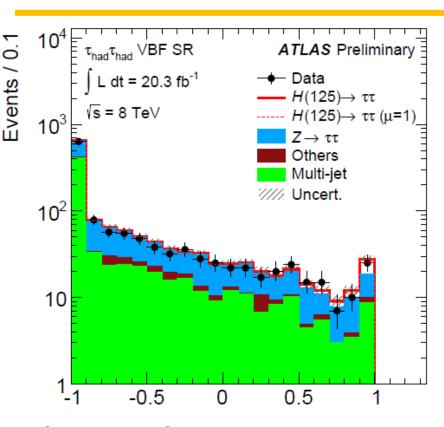
hadhad(pre-selection)

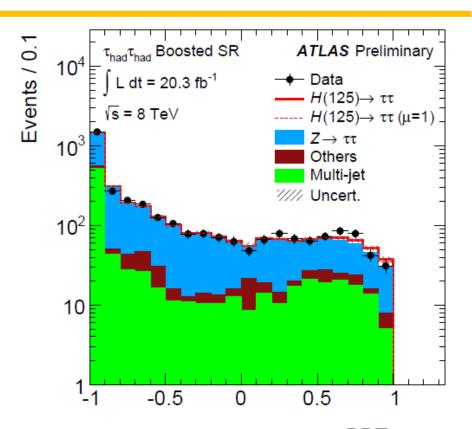

Background estimation and validation


Top CR by requiring at least one b-tagged jets.

→ All training variables and BDT score distributions in each CRs are modeled by estimation.

BDT distribution in leplep SR


Highest Score bin:


BDT score

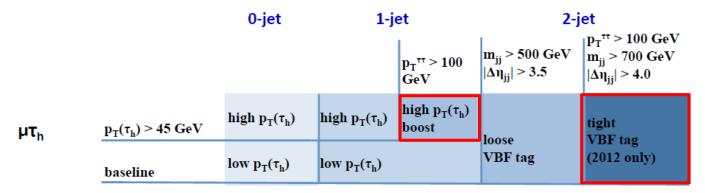
BDT score

	ggF	VBF	VH	Ζ→ττ	Fake	Тор	Others	S/B
VBF	0.7±0.4	5.0±1.5		4.6±0.6	4.5±1.7	1.8±0.4	2.7±0.4	0.42
boosted	1.7±0.7	0.7±0.2	0.2±0.1	13±1	0.8±0.3	3.5±0.9	2.3±0.2	0.13

BDT distribution in hadhad SR

Highest Score bin:

BDT score


BDT score

	ggF	VBF	VH	z→ ττ	Fake	Others	S/B
VBF	2.0±0.9	5.9±1.8		5.3±1.0	5.9±0.9	0.6±0.1	0.67
boosted	2.3±0.9	0.6±0.2	0.7±0.2	9.7±1.6	1.4±0.2	0.07±0.02	0.32

CMS Analysis

Categorization

- Categorize events based on different S/B ratio.
 - Introduced new high sensitivity categories.

- Each di-tau decay channels have at most 7 categ.
 - 27 categories for 8TeV
 - 24 categories for 7TeV
 - Total : 51 categories


had + had 3(3) categ.
mu + had 7(6) categ.
e + had 6(5) categ.
mu + mu 6(5) categ.
mu + mu 6(5) categ.
f(5) categ.
MVA score discriminant for the following strains of the following st

Used MVA for ee/μμ channels

Background estimation

All normalizations are data-driven

 $Z \rightarrow \tau \tau$: embedded samples No MET/JES scale uncertainties **Shape estimation** and correction for selection efficiencies

Different from ATLAS

W+jets:

- Normalization from high m_T control region
- **Shape from MC**

ttbar:

- Normalization from eµ b-tag control region
- **Shape from MC**

Z→ee/µµ

- Normalization scale factor from tag-and-probe in data
- **Shape from MC**

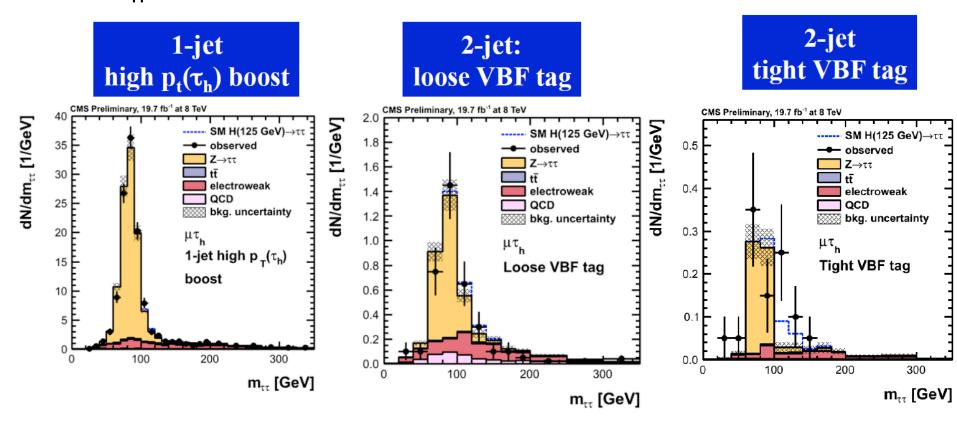
QCD:

- Different from ATLAS Normalization from ratio of same-sign(SS) to opposite-sign (OS)
 - data events
- Shape from SS data events

FJPPL 2014 29 26th May, 2014

Systematic uncertainties

	Uncertainty	Affected samples	Change in acceptance	
	Tau energy scale	signal & sim. backgrounds	shape	
	Tau ID & trigger	signal & sim. backgrounds	8–19%	
	e misidentified as τ_h	$Z \rightarrow ee$	20–74%	
E	μ misidentified as τ_h	$Z o \mu \mu$	30%	
Experimental	Jet misidentified as τ_h	Z boson plus jets	20-80%	
uncertainties	Electron ID & trigger	signal & sim. backgrounds	2–6%	
CONTRACTOR CONTRACTOR	Muon ID & trigger	signal & sim. backgrounds	2–4%	
	Electron energy scale	signal & sim. backgrounds	shape	
	Jet energy scale	signal & sim. backgrounds	0-20%	
	E _T ^{miss} scale	signal & sim. backgrounds	1–12%	
	$\varepsilon_{\text{b-tag}}$ b jets	signal & sim. backgrounds	0–8%	
	$\varepsilon_{b\text{-tag}}$ light-flavoured jets	signal & sim. backgrounds	1–3%	
	Norm. Z production	Z	3%	
	$Z \rightarrow \tau \tau$ category	Z ightarrow au au	2-14%	
T 5	Norm. W+jets	W+jets	10-100%	CMS Simulation \sqrt{s} = 8 TeV $\mu\tau_h$
Background	Norm. t t	t t	8–35% ⁵	.16 H → ττ m _H = 125 GeV
estimation	Norm. diboson	diboson	15-45%	.14 — Z → ττ
	Norm. QCD multijet	QCD multijet	6–70% ₹ °	.12
	Shape QCD multijet	QCD multijet	shape	0.1
	Luminosity 7 TeV (8 TeV)	signal & sim. backgrounds	2.2% (2.6%)	.08
			0	.06
			0	.04
			0	.02

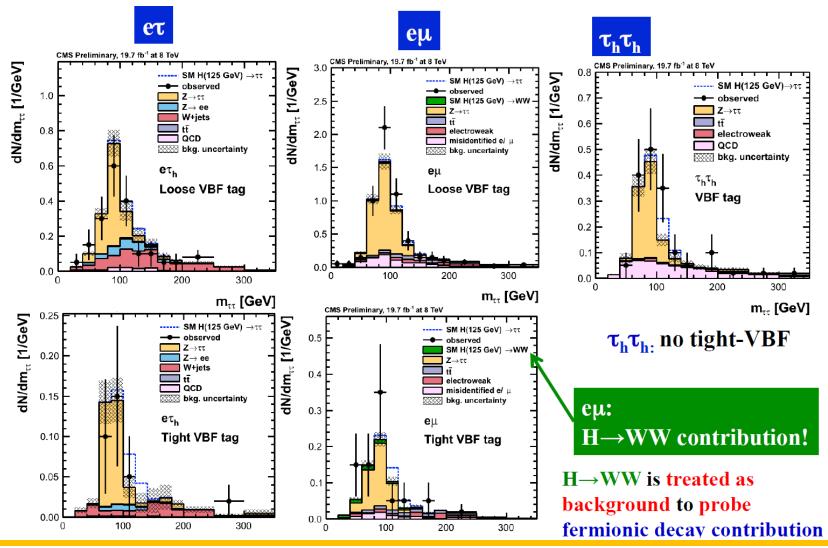

Tau Energy Scale(TES) uncertainty is one of the dominant uncertainty unlike ATLAS.

This is simply because CMS uses the mass discriminant which is quite sensitive to the TES.

CMS Results

Mass distribution in the signal region

• $\mu \tau_h$ channel is the most sensitive channel

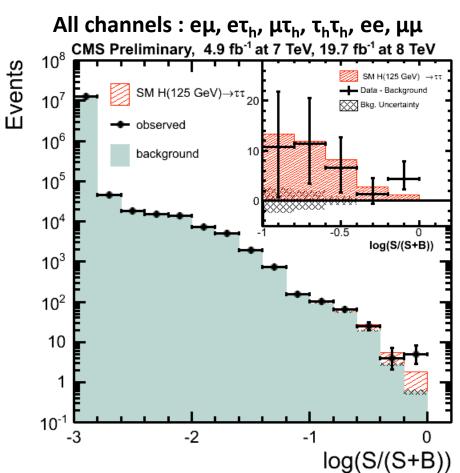

$$p_t(\tau_h) > 45 \text{ GeV}$$

 $p_t^{\tau\tau} > 100 \text{ GeV}$

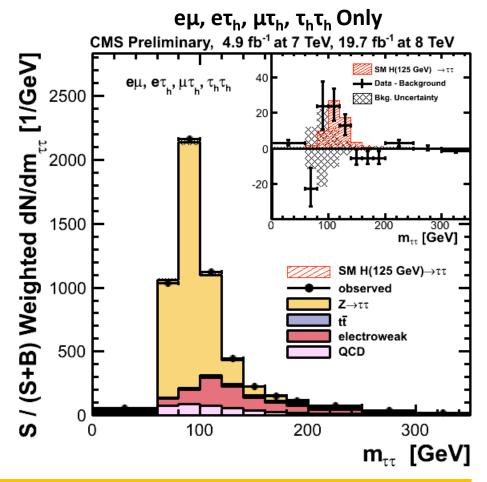
$$M_{jj} > 500 \text{ GeV } |\Delta \eta_{jj}| > 3.5$$

$$M_{jj} > 700 \text{ GeV}, |\Delta \eta_{jj}| > 4$$

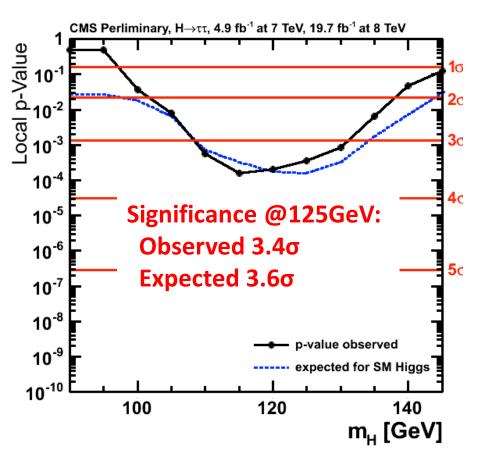
 $p_t^{\tau \tau} > 100 \text{ GeV}$

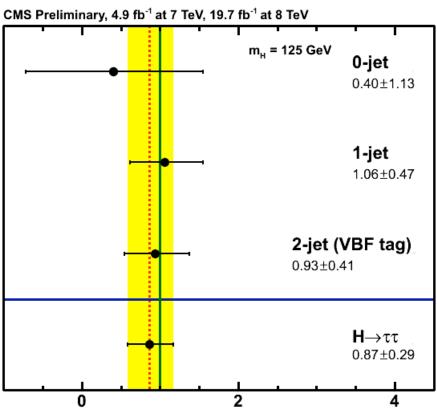

Mass distribution in the signal region

Other VBF channels



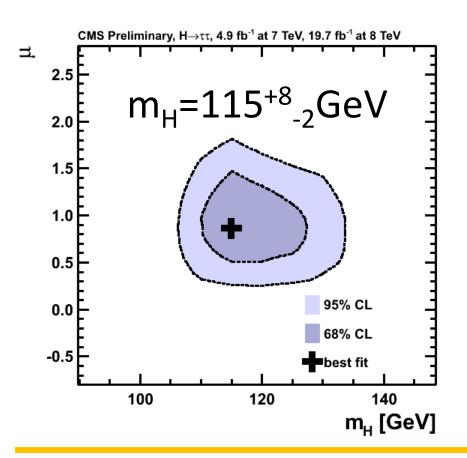
Summary plots

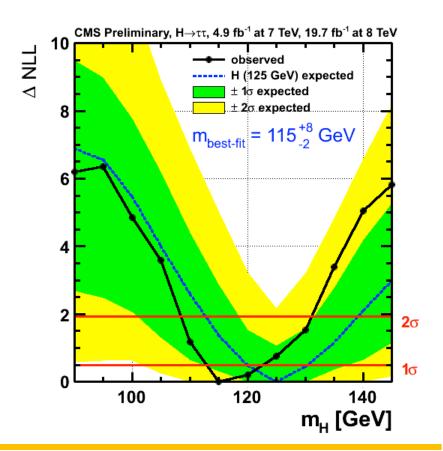

 Calculate S/(S+B) in every bin of the mass distributions of every event category and channels.



• Weighted by S/(S+B) using 68% region around the $m_{\tau\tau}$ peak.

Significance and Signal strength


Evidence of H → ττ decay!


$$\mu_{best} = 0.87 \pm 0.29$$

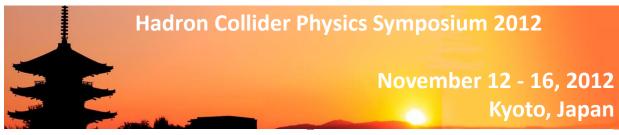
Mass measurement of the resonance?

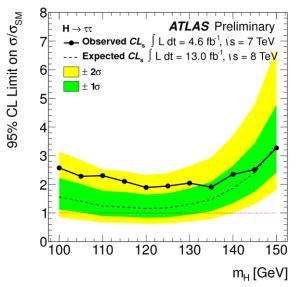
Mass sensitivity in CMS

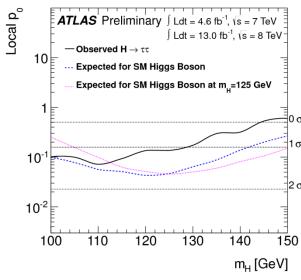
 Since CMS uses the mass distribution as discriminant, it is possible to measure the mass.

Previous result

Last tautau public results are:


ATLAS-CONF-2012-160


One year ago...


Limit (exp):1.9(1.2)xSM

 $p0(exp): 1.1(1.7)\sigma$

 μ = 0.7 \pm 0.7

Repeated analyses by using full data (13→20fb⁻¹) didn't expect reaching evidence.

Backgrounds in highest score bins (leplep)

Process/Category	VBF				Boosted	
BDT score bin edges	0.684-0.789	0.789-0.895	0.895-1.0	0.667-0.778	0.778-0.889	0.889-1.0
ggF	0.53 ± 0.26	0.8 ± 0.4	0.7 ± 0.4	5.3 ± 2.1	5.2 ± 2.0	1.7 ± 0.7
VBF	1.15 ± 0.35	2.0 ± 0.6	5.0 ± 1.5	1.01 ± 0.33	1.5 ± 0.5	0.67 ± 0.22
WH	< 0.05	< 0.05	< 0.05	0.71 ± 0.22	0.64 ± 0.20	0.16 ± 0.05
ZH	< 0.05	< 0.05	< 0.05	0.36 ± 0.11	0.32 ± 0.10	0.06 ± 0.02
$Z \rightarrow \tau^+ \tau^-$	7.6 ± 0.8	9.0 ± 0.9	4.6 ± 0.6	97 ± 7	61.5 ± 3.2	13.6 ± 1.3
Fake	2.8 ± 0.7	5.8 ± 2.0	4.5 ± 1.7	10.1 ± 3.1	15 ± 5	0.79 ± 0.29
Тор	4.0 ± 0.9	2.9 ± 0.7	1.8 ± 0.4	28 ± 7	15 ± 4	3.5 ± 0.9
Others	1.97 ± 0.26	3.3 ± 0.4	2.7 ± 0.4	24.7 ± 1.9	8.8 ± 0.6	2.34 ± 0.24
Total Background	16.3 ± 1.5	20.9 ± 2.4	13.5 ± 2.4	160 ± 7	101 ± 4	20.2 ± 1.8
Total Signal	1.7 ± 0.5	2.9 ± 0.9	5.7 ± 1.7	7.4 ± 2.4	7.7 ± 2.5	2.6 ± 0.8
S/B	0.10	0.14	0.42	0.05	0.08	0.13
Data	23	28	19	156	128	20

	ggF	VBF	VH	Ζ→ττ	Fake	Тор	Others	S/B
VBF	0.7±0.4	5.0±1.5		4.6±0.6	4.5±1.7	1.8 ± 0.4	2.7±0.4	0.42
boosted	1.7±0.7	0.7±0.2	0.2±0.1	13±1	0.8±0.3	3.5±0.9	2.3±0.2	0.13

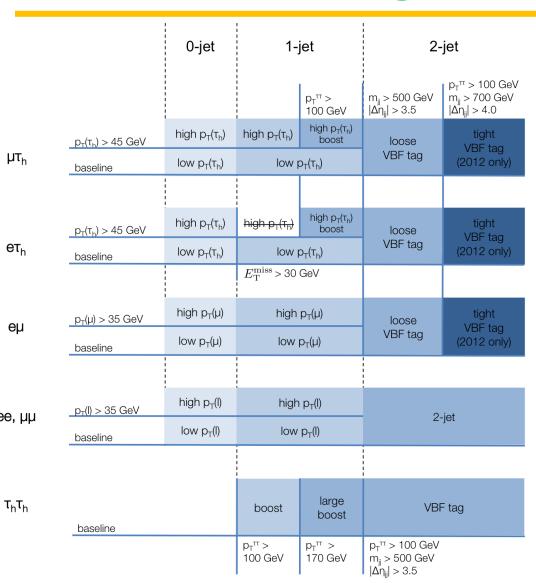
26th May, 2014 FJPPL 2014 39

Backgrounds in highest score bins (lephad)

Process/Category		VBF			Boosted			
BDT score bin edges	0.5-0.667	0.667-0.833	0.833-1.0	0.6-0.733	0.733-0.867	0.867-1.0		
ggF	2.2 ± 0.9	3.5 ± 1.5	1.2 ± 0.6	7.7 ± 2.9	6.3 ± 2.3	5.5 ± 2.1		
VBF	4.1 ± 1.2	9.2 ± 2.7	7.5 ± 2.2	1.7 ± 0.5	1.5 ± 0.5	1.3 ± 0.4		
WH	< 0.05	< 0.05	< 0.05	0.95 ± 0.29	0.85 ± 0.26	0.81 ± 0.25		
ZH	< 0.05	< 0.05	< 0.05	0.42 ± 0.13	0.47 ± 0.14	0.41 ± 0.12		
$Z \rightarrow \tau^+ \tau^-$	28.6 ± 1.4	25.0 ± 1.6	2.41 ± 0.35	48.3 ± 3.4	26.1 ± 2.7	18.4 ± 2.0		
Fake	37.7 ± 1.8	27.9 ± 2.1	3.5 ± 0.5	27 ± 4	10.8 ± 1.8	5.8 ± 1.4		
Top	6.5 ± 0.7	4.1 ± 0.8	1.5 ± 0.4	7.0 ± 0.9	5.7 ± 0.8	2.23 ± 0.33		
Diboson	2.9 ± 0.4	3.0 ± 0.5	0.23 ± 0.04	4.8 ± 0.5	4.0 ± 0.5	1.69 ± 0.23		
$Z \to \ell\ell(j \to \tau_{\rm had})$	8.7 ± 1.7	3.3 ± 0.5	0.40 ± 0.10	3.8 ± 0.5	0.71 ± 0.07	< 0.05		
$Z \to \ell\ell(\ell \to \tau_{\rm had})$	2.8 ± 1.2	1.9 ± 1.2	0.7 ± 0.6	9.4 ± 1.9	4.9 ± 1.1	3.8 ± 1.2		
Total Background	87.2 ± 2.7	65 ± 5	8.7 ± 2.5	101 ± 6	52 ± 4	32 ± 4		
Total Signal	6.3 ± 1.8	12.7 ± 3.5	8.7 ± 2.4	10.7 ± 3.3	9.2 ± 2.8	8.0 ± 2.5		
S/B	0.07	0.20	1.0	0.11	0.18	0.25		
Data	90	80	18	103	64	34		

	ggF	VBF	VH	Ζ→ττ	Fake	Тор	Others	S/B
VBF	1.2±0.6	7.5±2.2		2.4±0.4	3.5±0.5	1.5±0.4	1.3±0.7	1.0
boosted	5.5±2.1	1.3±0.4	1.2±0.3	18±2	5.8±1.4	2.2±0.3	5.5±1.2	0.25

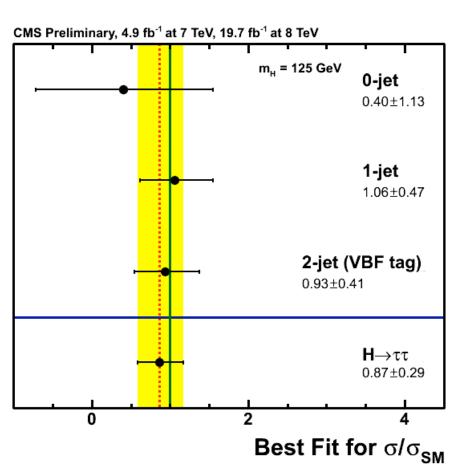
26th May, 2014 FJPPL 2014 40


Backgrounds in highest score bins (hadhad)

Process/Category		VBF Boosted				
BDT score bin edges	0.85-0.9	0.9-0.95	0.95-1.0	0.85-0.9	0.9-0.95	0.95-1.0
ggF	0.39 ± 0.17	0.35 ± 0.16	2.0 ± 0.9	2.2 ± 0.8	2.5 ± 1.0	2.3 ± 0.9
VBF	0.57 ± 0.18	0.72 ± 0.22	5.9 ± 1.8	0.55 ± 0.17	0.61 ± 0.19	0.57 ± 0.17
WH	< 0.05	< 0.05	< 0.05	0.34 ± 0.11	0.40 ± 0.12	0.44 ± 0.14
ZH	< 0.05	< 0.05	< 0.05	0.22 ± 0.07	0.22 ± 0.07	0.22 ± 0.07
$Z \rightarrow \tau^+ \tau^-$	3.2 ± 0.6	3.4 ± 0.7	5.3 ± 1.0	15.7 ± 1.7	12.3 ± 1.8	9.7 ± 1.6
Multijet	3.3 ± 0.6	2.9 ± 0.6	5.9 ± 0.9	5.2 ± 0.6	3.7 ± 0.5	1.40 ± 0.22
Others	0.38 ± 0.09	0.49 ± 0.12	0.64 ± 0.13	1.49 ± 0.27	2.8 ± 0.5	0.07 ± 0.02
Total Background	6.9 ± 1.3	6.8 ± 1.3	11.8 ± 2.6	22.4 ± 2.5	18.8 ± 2.8	11.2 ± 1.9
Total Signal	0.97 ± 0.29	1.09 ± 0.31	8.0 ± 2.2	3.3 ± 1.0	3.8 ± 1.2	3.6 ± 1.1
S/B	0.14	0.16	0.67	0.15	0.2	0.32
Data	6	6	19	20	16	15

	ggF	VBF	VH	z → ττ	Fake	Others	S/B
VBF	2.0±0.9	5.9±1.8		5.3±1.0	5.9±0.9	0.6±0.1	0.67
boosted	2.3±0.9	0.6±0.2	0.7±0.2	9.7±1.6	1.4±0.2	0.07 ± 0.02	0.32

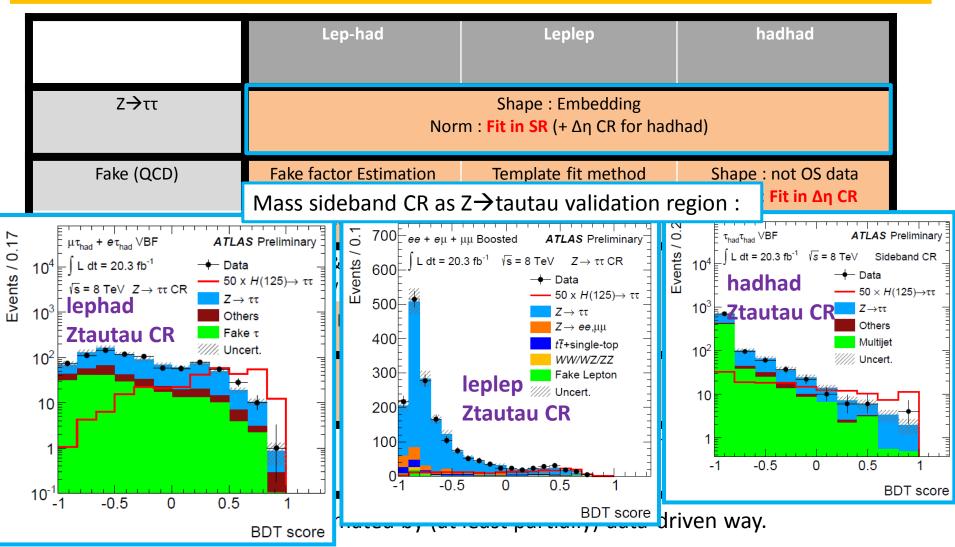
26th May, 2014 FJPPL 2014 41

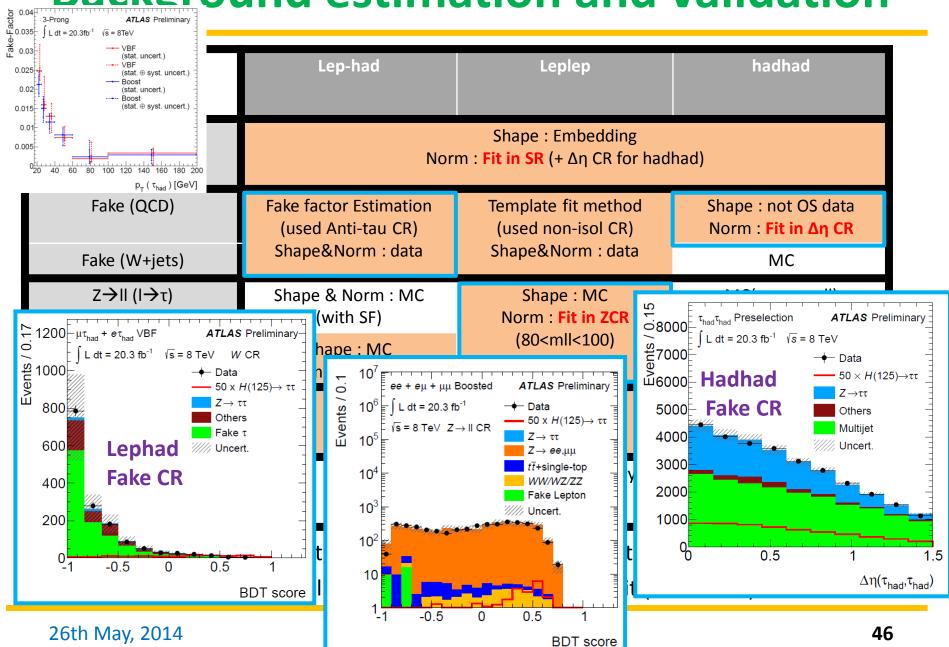

Full categorization chart


- For 7TeV analysis, loose and tight VBF categories are merged.
- 1jet e-had cahnnels used MET>30GeV cut.

Signal strength

Events split by categories

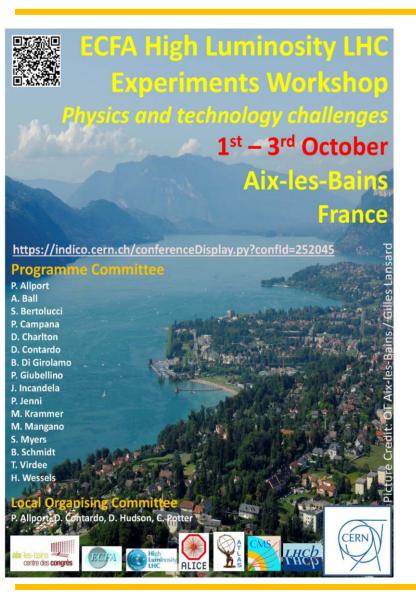

Events split by channels


	Lep-had	Leplep	hadhad				
Ζ→ττ	Nor	Shape : Embedding Norm : Fit in SR (+ Δη CR for hadhad)					
Fake (QCD)	Fake factor Estimation (used Anti-tau CR)	Template fit method (used non-isol CR)	Shape : not OS data Norm : Fit in Δη CR				
Fake (W+jets)	Shape&Norm: data	Shape&Norm: data	MC				
Z → II (I→τ)	Shape & Norm : MC (with SF)	Shape: MC Norm: Fit in ZCR	MC(very small)				
Z→II(Jet→τ)	Shape: MC Norm: Fit in Zll CR	(80 <mll<100)< td=""><td></td></mll<100)<>					
Тор	Shape Norm : Fit	MC(very small)					
Diboson	Shape & Norm : MC (very small)						

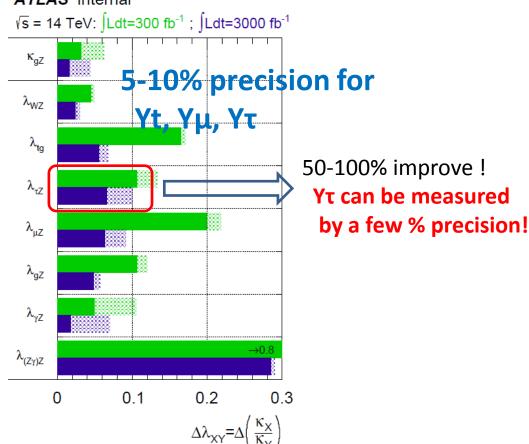

: Background estimated by (at least partially) data-driven way.

Fit in XX: The CRs are included in the Profile Likelihood Fit (Fit model.)

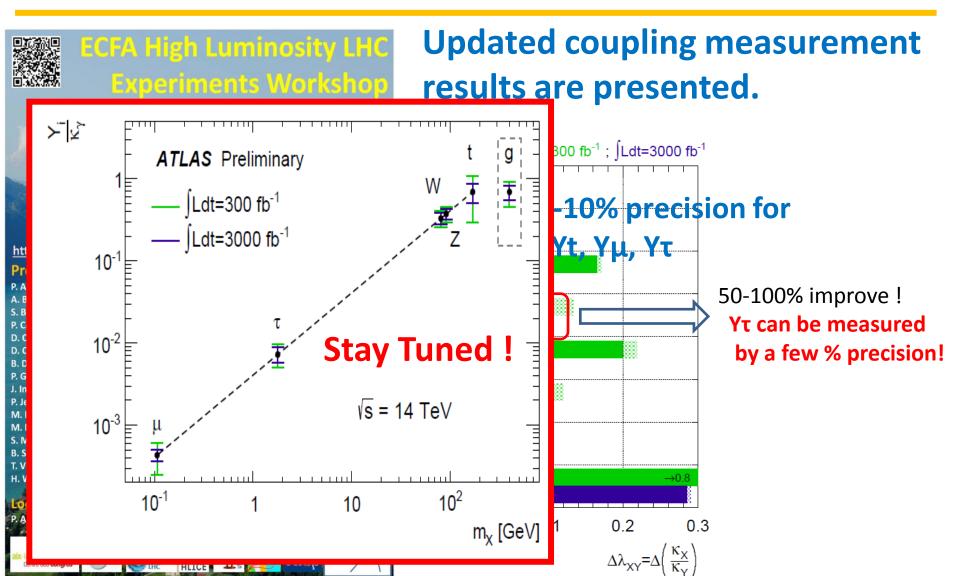
Fit in XX: The CRs are included in the Profile Likelihood Fit (Fit model.)



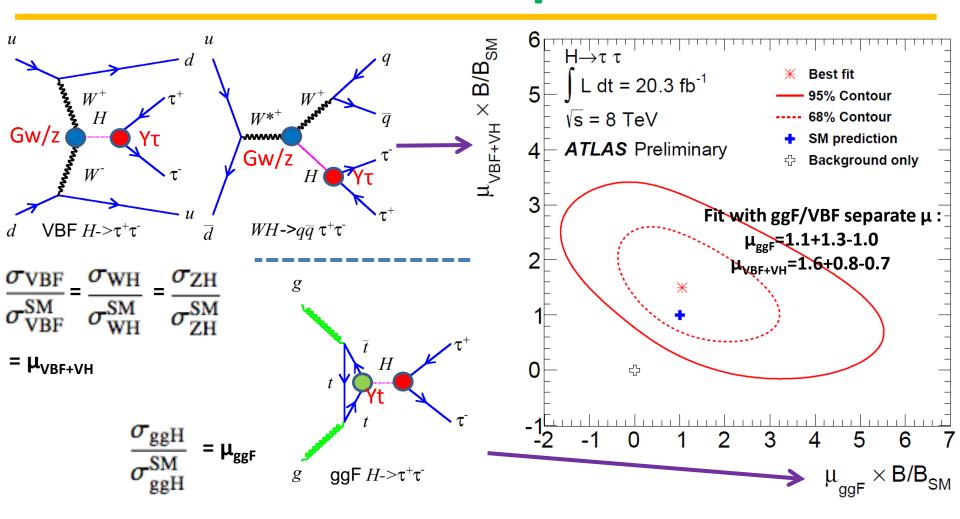
: Background estimated by (at least partially) data-driven way.


Fit in XX: The CRs are included in the Profile Likelihood Fit (Fit model.)

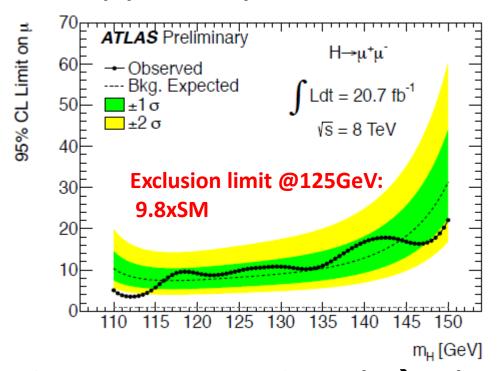
Future prospect



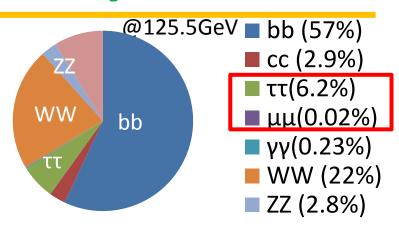
Updated coupling measurement results are presented.

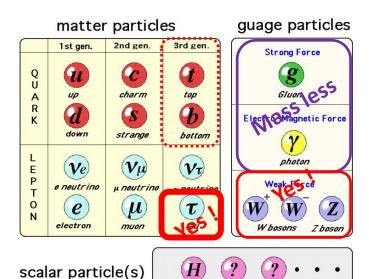

ATLAS Internal

Future prospect

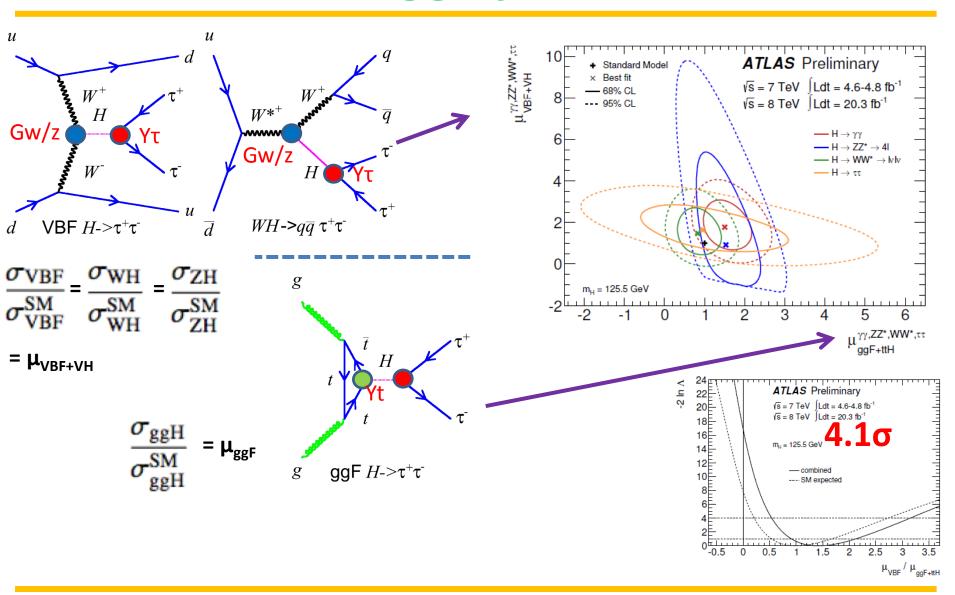

Production dependence

Both ggF and VBF production process are consistent to the SM!

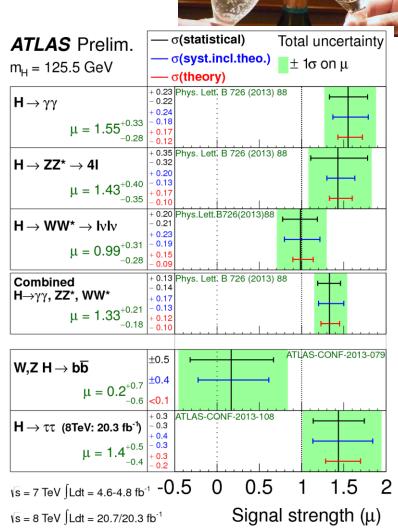

Lepton universality?


• H \rightarrow µµ decay is also searched.

This correspond to the BR(H $\rightarrow \mu\mu$)<0.2% So, BR(H $\rightarrow \tau\tau$) >> BR(H $\rightarrow \mu\mu$)


Higgs boson does not universally couple to fermions (leptons)

Elements of the Standard Model


VBF v.s. ggF production

Conclusion

- Both ATLAS and CMS observed significant excess in tautau searches.
 - Result @125GeV:
 - ATLAS: 4.1σ (expected 3.2σ)
 - $-\mu_{best}$ =1.4+0.5-0.4
 - CMS: 3.4 σ (expected 3.6σ)
 - $-\mu_{best} = 0.87 \pm 0.29$
 - This is 4th channel which observed significant excess.
 - First strong evidence of fermion decay of the Higgs Boson!

Decay channel	Expected sensitivity	Observed Sensitivity
H(124.3)→ZZ	4.4σ	6.6σ
H(126.8)→YY	4.1σ	7.4σ
H(125)→WW	3.7σ	3.8σ
Η(125)→ττ	3.2σ	4.1σ
H(125)→bb	1.6σ	0.4σ

FJPPL (TYL) application 2014-2015 Fiscal year April 1st 2014 - March 31st 2015 Please replace the red examples by the appropriate data in black

ID ¹ :LHC-06	Title:Improvement of the τ jet measurement applied to the low mass H Higgs search in ττ channel							
	Fre	nch Group		Japa	anese Gro	ир		
	Name	Title	Lab./Organis. ²	Name	Title	Lab/Organis. ³		
Leader	P. Pétroff	DR	LAL/IN2P3	K. Hara	AP	Tsukuba HEP		
	M. Jaffré	DR	LAL/IN2P3	S. Kim	P	Tsukuba HEP		
Members	L. Poggioli	DR	LAL/IN2P3	R. Fuchi	PhD	Tsukuba/HEP		
	D. Rousseau	DR	LAL/IN2P3	K. Tokushuku	P	KEK		
	R.Tanaka	CR	LAL/IN2P3	S. Tsuno	AP	KEK		
	F. Hariri	PhD	LAL/IN2P3	K. Nakamura	AP	KEK		
	M. Ayoub	PhD	LAL/IN2P3					

Allocated Funding (U Tsukuba)

Additional Funding from Japan								
Additional Fund	Additional Funding from Japan							
Provided by/Requested to 6	Type	k¥						
Tsukuba HEP								
Round travel France-Japan	2 travel	500						
per diem	50/day	500						
Round travel CERN-Paris	70x2	140						
Total		1140						

Funding Requested

Funding Request from France							
Description	€/unit	Nb of units	Total (€)	Requested to ⁴ :			
Student stay in anceF	1000/month	3 months	3000	IN2P3			
Visit to KEK/Tsukuba (2 persons)	150/day	10 days	3000	IN2P3			
Travels	1000	2 travels	2000	IN2P3			
Total			8000				
	Funding Req	uest from KEK		-			
Description	k¥/Unit	Nb of units	Total (k¥)	Requested to:			
Round travel France-Japan	230	1 travel	200	KEK			
Visit to France per diem	10/day	7 days	70	KEK			
Total			300				