

Top quark physics at the LC

Roman Pöschl

TYL/FKPPL Meeting - Bordeaux May 2014

An enigmatic couple ...

- Higgs and top quark are intimately coupled!
 Top Yukawa coupling O(1) !
 Top mass important SM Parameter
- New physics by compositeness? Higgs <u>and</u> top composite objects?

- LC perfectly suited to decipher both particles

Top in TYL

- 8-10 November TYL Top workshop at KEK

~20 participants Get known to each other Define topics of collaboration

Will present today results of studies discussed at the workshop

- 5-6 March 2014 International top workshop at LPNHE Paris Strong stimulation by French-Japanese TYL virtual lab
- Organisation and programme committee
 Emi Kou, Didier Lacour, Keisuke Fuji, François LeDiberder, François Richard, Dirk Zerwas, Wolfgang Hollik, Marcel Vos R.P.
- 32 registered participants

- Indico page

https://agenda.linearcollider.org/conferenceDisplay.py?ovw=True&confld=6296

Top quark physics at electron-positron colliders

σ

Top quark production through electroweak processes,

no competing QCD production => Small theoretical errors!

- High precision measurements

Top quark mass at ~ 350 GeV through threshold scan Polarised beams allow to test chiral structure at ttX vertex => Precision on form factors F

- Studies presented here deal with no or only mildly boosted tops, beta \sim 0.7
- A major difference between LC and LHC is that an LC will run triggerless
- -> Unbiased event samples, all event selection happens off-line! FKPPL/TYL - May 2014

Relevant scales for Top physics and LC Physics programme

 After TDR and Japanese initiative, programme for ILC under discussion
 ILC in staged approach but which is first stage?

- Arguments to start at 350 GeV include Top physics programme

Total tt cross section at LC

Principle: m_t from $\sigma_{tt}(m_t)$

Advantages:

- \triangleright count number of $t\bar{t}$ events
- color singlet state
- background is non-resonant
- physics well understood
 - (renormalons, summations)
- Top decay protects from non-pert effects

Much of the discriminating power of the approach related to the strong mass-dependence (ttbar resonance).

Peak position very stable in theory predictions (threshold mass scheme).

Typical results: $ightarrow \delta m_t^{
m exp} \simeq 50~{
m MeV}$ $\rightarrow \delta m_t^{\rm th} \simeq 100 {\rm MeV}$ What mass? $\sqrt{s}_{rise} \sim 2m_t^{thr} + pert.series$ (short distance mass: $1S \leftrightarrow \overline{MS}$)

A. Hoang

Top mass and top Yukawa coupling at threshold

The template is prepared by floating top mass and width. Since the measurement of δyt is extracted from normalization of σtt , the normalization is also used for σtt fit.

O 2+1 param : <u>2D fit of mt and Γt</u>, yt is measured individually.

O 3 param : **3D fit** of mt, Γt and yt.

$\int \mathcal{L} dt = \mathbf{100} \, \mathrm{fb^{-1}}$

	(2 + 1) param fit	3 param fit	
mt	19 MeV	29 MeV	Stat. Uncertainties
Гt	38 MeV	39 MeV	Theoretical
yt	4.6%	5.9%	uncertainties ~70 MeV
	Total expected prov	cision on $m \sim 10$	

T. Horiguchi

Total expected precision on $m_{_{t}} \sim 100 \text{ MeV}$

(very conservative estimation!!!) FKPPL/TYL - May 2014

Top Yukawa coupling above threshold

 g_{ttH}/g_{ttH}

Canonical

LumiUP

R. Horiguchi et al.

T. Tanabe, T. Price

FKPPL/TYL – May 2014

500 GeV + 1 TeV

3.2%

2.0%

500 GeV

14%

7.8%

ILC TDR

possible

Technically

Top Yukawa coupling above threshold

R. Yonamine et al.

T. Tanabe, T. Price

$\Delta g_{ttH}/g_{ttH}$	500 GeV	500 GeV + 1 TeV	
Canonical	14%	3.2%	
LumiUP	7.8%	2.0%	Technically possible
LumiUP	7.8%	2.0%	

Results of full simulation study for DBD at $\sqrt{s} = 500$ GeV

ArXiv: 1307.8102

Precision: cross section ~ 0.5%, Precision $A_{_{FR}}$ ~ 2%, Precision $\lambda_{_{\uparrow}}$ ~ 3-4%

Accuracy on CP conserving couplings

- ILC might be up to two orders of magnitude more precise than LHC ($\sqrt{s} = 14$ TeV, 300 fb⁻¹) Disentangling of couplings for ILC one variable at a time For LHC
- However LHC projections from 8 years old study
- Strong encouragement to update these numbers!

First step is Phys. Rev. Lett. 110 (2013) 172002 and arXiv:1404.1005

 Potential for CP violating couplings at ILC under study

ILC will be indeed high precision machine for electroweak top couplings

Reconstruction of top quark production angle

rkppl/iil - May 2014

Discussion of precisions (IFIC/LAL [F. Richard])

Models realising Top/Higgs compositeness and/or extra dimensions

Variety of models predicting modifications to tL and tR due to couplings to new strong sector

Sensitivities and constraints - Including current LHC results -								
Reminder IL δg _L /g _L ~ 0.6 δg _R /g _R ~ 1.4	C: i%, 1%	q q q q q q t t t t t t t t t t t t t t						
Model	dtR/tR %	dtL/tL %	dtLbL/t bL %	dɛb/ɛb	dɛ1/ɛ1	dơZt /ơZtt %		
Carena	0	-20	-14	0.8	1.1	-30		
Djouadi	-330	0	0	-1.4	1.1	70		
Gherghetta	-20	-20	-14	0.7	2.1	-36		
Grojean	0	10	7	-0.4	-1.0	17		
Hosotani	18	-7	-5	-0.4	-0.8	-5		
Little Higgs	0	-15	-10	0.6	1.0	-23		
Pomarol	0	-25	-17	1.0	1.2	-37		
Wulzer 1	25	25	17	-1.1	5.8	56		
Wulzer 2	-10	-10	-7	0.4	1.3	-20		

LEP constraints: $|\delta F^Z_{1A}| < 0.2, Q_{t_L} \rightarrow Q^{SM}_{t_L}$

Some models predict visible effects for LHC ILC will be able to distinguish between all models at several sigma level

$e+e-\rightarrow t$ tbar @EW NLO

Le Diberder, Kheim, Kiyo, Kou,

- Large electroweak (EW) corrections reported by Grace group Eur.J Phys.C (2013) Kheim et al
 - EW NLO as 5 % in cross-section, 15 % in A_{FB}

Done 2013-2014 √ Ide (Gra

Identifying the origin of large EW correction using GRACE (Grace tutorial)

Resumming the QED part (minor change in A_{FB})

Testing the case of polarized beam (Kheim&Kurihara→ new result!)

On-going

Towards the electroweak precision test at ILC

Estimating the theoretical errors in the theoretical prediction at EW NLO (varying input parameters)

- Deriving helicity amplitudes at NLO (non-trivial due to the non-factorizable contribution, e.g. box?)
- Top spin dependence, including the decay distribution

GRACE

- GRACE: Automatic Full o(α) ELWK correction w/SM&MSSM
- Beam polarization is implemented in GRACE-system, but Still Preliminary.
- Polarization of "e⁻_L e⁺_R" gives smaller 0(α)-corrections than "e⁻_R e⁺_L", however change A_{FB}
- SUSY signals can be seen through loop-effect.

- Sizable one loop electroweak corrections
- Do we need two loops?

FKPPL/TYL – May 2014

e.g. talk by

Nhi Quach

Summary and outlook

- <u>A LC is **the** machine for precision top physics</u>

First machine to produce top pairs in electroweak production!!! Essential pillar of LC physics program

- Rich program of top quark physics with 'exciting' prospects

-Precision on top mass \sim 50 MeV =>

'Final word' on vacuum stability of the universe

- Test of models with extra dimensions and/or compositeness
- Top elw. Measurements are complementary to Higgs coupling measurements
- Exploitation of potential requires huge experimental and theoretical efforts, all of them are addressed in TYL project
 - Theoretical uncertainty on top mass >> Experimental uncertainty
 - Uncertainty of theoretical prediction of AFB NLO with polarised beams NNLO would be 10 years of work !!!
 - Measurement of b quark charge still in infancy, may need revision of algorithms and detector
 - In general experimentalists will have to make sure that systematic errors can be kept small

Consolidation of project

- TYL/FJPPL funding is essential to continue the project Request: 8.5 kEUR to IN2P3 to support travel for four persons to KEK

> 1560 kY to KEK To support travel for three persons To France

- If funded can envisage to send 'next' LAL PhD student to KEK for a few weeks (work on b quark charge)
- Will search ways/and ask for ideas for ways to fund a truly co-shared PhD thesis (at small bureaucratic effort)

Backup

Type of error	Estimate of the error	Impact on M_h	
M_t	experimental uncertainty in M_t	$\pm 1.4 \text{ GeV}$	Uncortainty on (nola)
$lpha_{ m s}$	experimental uncertainty in $\alpha_{\rm s}$	$\pm 0.5 \text{ GeV}$	Uncertainty on (pole)
Experiment	Total combined in quadrature	$\pm 1.5 \text{ GeV}$	top quark mass dominates
λ	scale variation in λ	$\pm 0.7 \text{ GeV}$	uncertainty on stability
$oldsymbol{y}_t$	${\cal O}(\Lambda_{ m QCD})$ correction to M_t	$\pm 0.6 \text{ GeV}$	conditions
${oldsymbol y}_t$	QCD threshold at 4 loops	$\pm 0.3 ~{ m GeV}$	
RGE	EW at $3 \text{ loops} + \text{QCD}$ at 4 loops	$\pm 0.2 { m GeV}$	
Theory	Total combined in quadrature	$\pm 1.0 \text{ GeV}$	10

Total tt cross section at LC

Principle: m_t from $\sigma_{tt}(m_t)$

Advantages:

- \triangleright count number of $t\bar{t}$ events
- color singlet state
- background is non-resonant
- physics well understood
 - (renormalons, summations)
- Top decay protects from non-pert effects

Much of the discriminating power of the approach related to the strong mass-dependence (ttbar resonance).

Peak position very stable in theory predictions (threshold mass scheme).

Typical results: $ightarrow \delta m_t^{
m exp} \simeq 50~{
m MeV}$ $\rightarrow \delta m_t^{\rm th} \simeq 100 {\rm MeV}$ What mass? $\sqrt{s}_{rise} \sim 2m_t^{thr} + pert.series$ (short distance mass: $1S \leftrightarrow \overline{MS}$)

A. Hoang

Towards New Physics

à la G.M. Pruna, LC 13, Trento

Compositeness:

- ... provides elegant solution for naturalness
- ... few tensions with SM predictions
- ... composite Higgs hypothesis has only been marginally studied in comparison with other "fundamental" scenarios
- ... all scalar objects observed in nature turned out to be bound states of fermions

Physics modify Yukawa couplings and Ztt, Zbb Heavy fermion effect!

The solid pillars of the LC phyics program

Top quark W Boson Higgs Boson

Discovered 1995 at Tevatron Discovered 1979 at SPS Mass precisely at Tevatron LHC and ILC are/would be Top factories W factories W factories See talk by Klaus

Disentangling

At ILC **no** separate access to ttZ or tty vertex, but ...

ILC 'provides' two beam polarisations

$$P(e^{-}) = \pm 80\%$$
 $P(e^{+}) = \mp 30\%$

There exist a number of observables sensitive to chiral structure, e.g.

$$\boldsymbol{\sigma}_{I} \qquad A_{FB,I}^{t} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)} \qquad (F_{R})_{I} = \frac{(\sigma_{t_{R}})_{I}}{\sigma_{I}}$$
x-section Forward backward asymmetry Fraction of right handed top quarks
$$\boldsymbol{\nabla}$$
Extraction of six (five) unknowns
$$F_{1V}^{\gamma}, F_{1V}^{Z}, F_{1A}^{\gamma} = 0, F_{1A}^{Z}$$

$$F_{2V}^{\gamma}, F_{2V}^{Z}$$

FKPPL/TYL - May 2014

σι

Equations for cross section, A_{FB} and F_{R}

$$\sigma_I = 2\mathcal{A}N_c\beta \left[(1+0.5\gamma^{-2})(\mathcal{F}_{1V}^I)^2 + (\mathcal{F}_{1A}^{I'})^2 + 3\mathcal{F}_{1V}^I\mathcal{F}_{2V}^I \right],$$

$$(A_{FB}^{t})_{I} = \frac{-3\mathcal{F}_{1A}^{I'}(\mathcal{F}_{1V}^{I} + \mathcal{F}_{2V}^{I})}{2\left[(1+0.5\gamma^{-2})(\mathcal{F}_{1V}^{I})^{2} + (\mathcal{F}_{1A}^{I'})^{2} + 3\mathcal{F}_{1V}^{I}\mathcal{F}_{2V}^{I}\right]},$$

$$(F_R)_I = \frac{(\mathcal{F}_{1V}^I)^2 (1 + 0.5\gamma^{-2}) + (\mathcal{F}_{1A}^{I'})^2 + 2\mathcal{F}_{1V}^I \mathcal{F}_{1A}^{I'} + \mathcal{F}_{2V}^I (3\mathcal{F}_{1V}^I + 2\mathcal{F}_{1A}^{I'}) - \beta \mathcal{F}_{1V}^I \Re \mathfrak{e}(\mathcal{F}_{2A}^I)}{2 \left[(1 + 0.5\gamma^{-2}) (\mathcal{F}_{1V}^I)^2 + (\mathcal{F}_{1A}^{I'})^2 + 3\mathcal{F}_{1V}^I \mathcal{F}_{2V}^I \right]}$$

Detector concepts

Highly granular calorimeters

Central tracking with silicon Central tracking with TPC

Inner tracking with silicon

- LOI's Validated by IDAG in 2009
- <u>Publication of Detector Baseline Design in 2013, together with TDR</u>
- Concepts based on input from physics studies and detector R&D organised in R&D collaborations

Top quark mass – Theoretical accuracies

QCD + electroweak

Correct resummation of Non relativistic logs ~v

QCD

Theoretical uncertainties at the 2-3% level => Threshold scan theoretically well understood

Top Yukawa coupling above threshold

$\Delta g_{ttH}/g_{ttH}$	500 GeV	500 GeV + 1 TeV	
Canonical	14%	3.2%	
LumiUP	7.8%	2.0%	Technically possible
			possible

27

FKPPL/TYL - May 2014

R. Horiguchi et al. T. Tanabe, T. Price Discussion of potential systematic uncertainties

Experimental

- Luminosity: Critical for cross section measurements Expected precision 0.1% @ 500 GeV
- Beam polarisation: Critical for asymmetry measurements Expected to be known to 0.1% for e- beam and 0.35% for e+ beam
- Migrations/Ambiguities: Critical for AFB: Need further studies but expect to control them better than the theoretical error
- Jet energy scale: Critical for top mass determination Systematic study CLIC states systematic error ~ statistical error
- Other effects: B-tagging, passive material etc. LEP claims 0.2% error on R_{h} -> guiding line for LC

Theory:

- see above and in the following

The top quark and flavor hierarchy

Flavor hierarchy? Role of 3rd generation?

- A_{FB} anomaly at LEP for b quark Tensions at Tevatron
- Heavy fermion effect

Strong motivation to study chiral structure of top vertex in high energy e+e- collisions

Why is it sooo heavy?

	104	-			
	10 ³	-			
e	102	-			
5	10	-			b
ass	10 ⁰	-		CS	τ
Ξ	10⁻¹	-		μ	
	10 ⁻²	-	d		
	10 ⁻³	-	e		
	-		-		
	10 ⁻⁹	-			VT
	10-10	-		vμ	
	10-11	-	٧e		

Testing the chiral structure of the Standard Model

$$\Gamma^{ttX}_{\mu}(k^{2},q,\bar{q}) = -ie \left\{ \gamma_{\mu} \left(F^{X}_{1V}(k^{2}) + \gamma_{5} F^{X}_{1A}(k^{2}) \right) + \frac{\sigma_{\mu\nu}}{2m_{*}} (q+\bar{q})^{\mu} \left(iF^{X}_{2V}(k^{2}) + \gamma_{5} F^{X}_{2A}(k^{2}) \right) \right\}$$

$$\mathcal{F}^{L}_{ij} = -F^{\gamma}_{ij} + \left(\frac{-\frac{1}{2} + s^{2}_{w}}{s_{w}c_{w}} \right) \left(\frac{s}{s-m^{2}_{Z}} \right) F^{Z}_{ij}$$

$$\mathcal{F}^{R}_{ij} = -F^{\gamma}_{ij} + \left(\frac{s^{2}_{w}}{s_{w}c_{w}} \right) \left(\frac{s}{s-m^{2}_{Z}} \right) F^{Z}_{ij} ,$$

$$(2)$$

Pure γ or pure $Z^0: \sigma \sim (F_i)^2 \Rightarrow$ No sensitivity to sign of Form Factors

 Z^0/γ interference : $\sigma \sim (F_i) \Rightarrow$ Sensitivity to sign of Form Factors

Measuring at 500 GeV

- Cross section close to maximum, A_{FR} well developed

 Other remarks: Need some velocity to get sensitive to chiral obervables (see backup slides)

Top polar angle using b charge (SL Analysis)

Event charge C = b1 - b2

In SL can compare charge C with lepton charge to select clean sample

Use only events with correct C or C=0 (plus another cut on the Lorentz Factor)

- Clean reconstruction of top quark direction $\epsilon \sim 30\%$ Will improve with improving charge reconstruction

Measurement of top quark polarisation

Measure angle of decay lepton in <u>top quark rest frame</u> Lorentz transformation benefits from well known initial state (N.B. : Proposal for hadron colliders applied to lepton colliders)

Differential decay rate

 $\frac{1}{\Gamma}\frac{d\Gamma}{dcos\theta_{\ell}} = \frac{1+\lambda_t cos\theta_{\ell}}{2} \text{ with } \lambda_t = 1 \text{ for } t_R \text{ and } \lambda_t = 1 \text{ for } t_L$

Slope measures fraction of $t_{R,I}$ in sample

Measurement of decay lepton almost 'trivial' at LC
High reconstruction efficiency for leptons
Reconstructed slope coincides
with generated slope

Slope λ_{L} can be measured to an accuracy of about 3-4%

The race is open !

Recent result on ttV by CMS

 $\sigma(t\bar{t}Z) = 0.28^{+0.14}_{-0.11} \,(\text{stat.}) \,{}^{+0.06}_{-0.03} \,(\text{syst.}) \,\text{pb}$

- Clearly, promising result
- How will it evolve with higher Luminosity?
- Revision of 'old' estimations of precisions are needed!

May expect:

+ s-channel, t-channel only relevant for eL

- Can one really speak about a ttbar cross section?
- If only 6f is relevant: What are relations to ttX couplings?
- What selection cuts are (theoretically) save?

Recap: LEP/SLD Constraints

- Recall that if one modifies the fermion \mathbb{E} couplings the SM loops becomes UV divergent and this requires introducing a **cutoff** $\pi \sim \text{TeV}$ to compute these contributions
- Given this cutoff the top EW couplings anomalies are limited by LEP/SLD measurements

Constraints due to Gauge Invariance

Gauge invariance relates ZtLtL to WtLbL and ZbLbL

$$\kappa_{bL}^{NC} + \kappa_{tL}^{NC} \sim \kappa_{tL}^{NC} = 2\kappa_{tLbL}^{CC}$$

 From LEP1 we know that ZbLbL has no anomaly meaning that

$\delta W t L b L_{-}$	$0.72 \frac{\delta Z t L t L}{\delta Z t}$
WtLbL	$\frac{0.72}{ZtLtL}$

- Loop contributions therefore fully constrain ZtLtL and ZtRtR and the only freedom left comes from BSM compensating contributions to ε1 and εb

Elements of top quark reconstruction

- By far dominating decays: All-hadronic (46%), semi-leptonic / lepton+jets (45%, 30% w/o τ)
 - try to avoid decays into τ, increased uncertainties from additional neutrino

Experimental challenge b-charge reconstruction - Motivation

- To measure AFB in fully hadronic decays there is no choice
- In semi-leptonic decays there is the charged lepton but

Right handed electron beam:

- <u>Hard W</u> in flight direction of Top and soft b's
- Flight direction of t from flight direction of W

Left handed electron beam:

- <u>Hard b</u> in flight direction of Top and soft W's
- Flight direction of t from flight direction of b
- => Wrong association ↔ top flip

Measurement of b-charge to resolve ambiguities

Top Yukawa coupling at threshold

The cross section is enhanced about 9% by exchanging the Higgs boson !!								
$\sigma_{tt} \propto \mathcal{M}_v $	w/o higgs	$_{s}+y_{t}^{2}\mathcal{N}$	$\mathcal{A}_{w/\ higg}$	$ s ^2$ (a)	1500		with higgs	
	100	1 8	$\delta\sigma$		1000		no higgs	
δy_t	$109 \times$	$\overline{2}^{\times}$ -	$\overline{\sigma}$		500	° \	γ/Z^*	
$\overline{y_t} \sim$		9			0 342	344		
					042	e-	10 (000)	
Stat. Error (50 fb ⁻¹)	6-Jet (Left)	6-Jet (Right)	4-Jet (Left)	4-Jet (Right)	6-Jet + 4-Jet (Left)	6-Jet + 4-Jet (Right)	Combined (100 fb ⁻¹)	
$\frac{\delta\sigma}{}$	1 20/	1 70/	1 20/	1.00/	0.00/	1 20/		
σ	1.2%	1.7%	1.3%	1.9%	0.9%	1.3%		
$\frac{\delta y_t}{y_t}$	7.2%	10.2%	7.8%	11%	5.3%	7.5%	4.3%	

T. Horiguchi

tth study at \sqrt{s} = 500 GeV

- direct top Yukawa coupling measurement
- $\sqrt{s} = 500 \text{ GeV ILC}, \text{ L} = 500 \text{ fb}^{-1}$, Mh = 125 GeV
- interference term is negligible
- cut based event selection and counting analysis
- target signal: tth→4q+4b, lv+2q+4b
- backgrounds: ttZ, ttg, tbW
- combined result
 significance = 3.16
 - $\rightarrow |\Delta g_t/g_t| = 15.7\%$
- In the cases of lumi-up(L=1600fb⁻¹) or \sqrt{s} = 520 GeV, significance reaches 5

next steps

- estimate systematic uncertainties
- use MVA
- Improve Lepton ID method

Elements of top quark reconstruction

Three different final states:

1) Fully hadronic (46.2%) \rightarrow 6 jets

2) Semi leptonic (43.5%) → 4 jets + 1 charged lepton and a neutrino

3) Fully leptonic (10.3%) \rightarrow 2 jets + 4 leptons

Results in the following mainly based on semi-leptonic decay Do however integrate results from fully hadronic study

First attempt – Semi leptonic b-decays (SL Analysis)

- Cons: Only small gain in event yield $30\% \rightarrow 32\%$ (only ~10% of b decay semi-leptonically) Difficult to disinguish correct mu from background
- Pros: Comparatively easy and quick study Ideal as a first common project

Every improvement of b-charge measurement has direct impact on event yield

Measurement of b quark charge (N.B. At example of fully hadronic analysis, PhD M.S. Amjad)

- Use of LCFIPlus package (University of Tokyo/University of Kyushu)

- Vertex charge measurement mandatory for fully hadronic top decays
- LC vertex and tracking system allows for determination of b-meson (b-quark) charge
 B-quark charge measured correctly in about 60% of the cases
 Can be increased to 'arbitrary' purity on the expense of smaller statistics

b-quark charge measurement is major topic for future collaboration within TYL