[Nu_03] Precise measurement of the neutrino oscillation angle θ_{13} using $\bar{\nu}_e$ from nuclear reactors with Double Chooz experiment

Emmanuel Chauveau on behalf of the Double Chooz collaboration

Research Center for Neutrino Science Tohoku University, Sendai

TYL/FJPPL Workshop, Bordeaux Tuesday 27th May 2014

FRANCE-JAPAN PARTICLE PHYSIC

Outline

- Introduction to θ_{13} measurement and Double Chooz experiment
- 2013 2014 activity report:
 - New θ_{13} results with the far detector "DC-III (n-Gd)"
 - Status of the near detector integration
- Prospect for coming phase with both detectors

Neutrino physics and importance of θ_{13}

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$atmospheric v \qquad reactor+accelerator v \qquad solar v \qquad solar v \qquad normal hierarchy \\ (\Delta m_{32}^{2} > 0) \\ m_{1} & m_{2} \\ m_{1} & m_{2} \\ (\Delta m_{32}^{2} < 0) \end{pmatrix}$$

- \blacksquare neutrino: extremely small mass, no charge, weak interaction only \rightarrow arduous detection
- flavor eigenstates (ν_e, ν_μ, ν_τ) ≠ (ν₁, ν₂, ν₃) mass eigenstates → PMNS mixing matrix + flavor oscillating during propagation of neutrinos
- mixing parameters: θ_{12} , θ_{23} , θ_{13} , Δm_{32}^2 , Δm_{21}^2 and δ_{CP}
- recent discovery of $\theta_{13} > 0$ (2011) \rightarrow remaining unknown: sign of Δm_{32}^2 and δ_{CP}
- precise measurement of θ_{13} = critical step to probe mass hierarchy and leptonic CP violation

Measurement of θ_{13} with reactor neutrinos

$$P_{\bar{\nu}_e \to \bar{\nu}_e} \ = \ 1 \ - \ \sin^2(2\theta_{13}) \ \sin^2\left(\frac{\Delta m_{31}^2 L}{4 \ E}\right) \ + \ {\cal O}(10^{-3}) \quad \ {\rm for} \ L/E \lesssim 1$$

- \blacksquare survival probability depends of L/E $_{\nu}$ \rightarrow measurement based on rate and shape deformation
- precise measurement of θ_{13} by 2 identical detectors (cancel flux & efficiency uncertainties)
 - far detector ightarrow disappearance of $ar{
 u}_e$ around first minimum
 - near detector \rightarrow unoscillated neutrino flux

Double Chooz experimental layout

INVERSE BETA DECAY on proton (thresold > 1.8 MeV)

$$\bar{\nu}_e + p^+ \longrightarrow e^+ + n$$

prompt signal: scintillation + e^+ annihilation Eprompt $\approx E(v_e) - 0.8 \text{ MeV}$

Neutrino target: liquid scintillator PXE + Gd

Gamma catcher: liquid scintillator PXE (no Gd)

Buffer volume: transparent mineral oil with 390 x 10" PMTs assembly

Inner Veto: liquid scintillator (LAB) with 78 x PMTs 8"

Outer Veto: plastic scintillator strips

Double Chooz collaboration

BRAZIL CBPF UNICAMP UFABC	FRANCE APC CEA/DSM/IRFU: SPP, SPN, SEDI, SIS, SENAC. CNRS/IN2P3: Subatech, IPHC.	GERMANY EKU Tübingen MPIK Heidelberg RWTH Aachen TU München U. Hamburg	JAPAN Tohoku U. Tokyo Inst. Tech. Tokyo Metro. U. Niigata U. Kobe U. Tohoku Gakuin U. Hiroshima Inst. Tech.	RUSSIA INR RAS IPC RAS RRC Kurchatov	SPAIN CIEMAT-Madrid	USA U. Alabama ANL U. Chicago Columbia U. UC Davis Drexel U. U. Hawaii IIT KSU
$\begin{array}{l} 150 \text{ scientists in 7 countries} \\ \approx 60 \text{ from France + Japan} \\ \text{Spokespresson: Hervé de Kerret (CNRS/IN2P3)} \\ \text{Project manager: Christian Veyssière (CEA Saclay)} \end{array}$						LLNL MIT U. Notre Dame U. Tennessee

France + Japan contribution on Double Chooz

Highlight of leadership

- Project management
- Inner-detector PMTs
- PMT readout + electronics
- Online + DAQ
- Calibration
- Energy reconstruction
- Reactor neutrino prediction
 - Analysis

Nu_03 leadership

- Anatael Cabrera (APC, CNRS/IN2P3)
- Masahiro Kuze (Tokyo Institute of Technology)

Recent Publication (collaboration wide)

- Background Independent Measurement of θ₁₃ in Double Chooz Y.Abe et al., ArXiv: 1401.5981
- First Measurement of θ_{13} from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment Y.Abe et al., Phys. Lett. B723, 66-70 (2013)
- Direct Measurement of Backgrounds using Reactor-Off Data in Double Chooz Y.Abe et al., Phys. Rev. D87, 11102 1-7 (2013)

NEW RESULTS (2014) WITH THE FAR DETECTOR

New event selection

	DC-II (2012)	DC-III (2014)
Prompt Energy	0.7 – 12.2 MeV	0.5 – 20 MeV
Delayed Energy	4 – 10 MeV	6 – 12 MeV
Δt	2 – 100 µs	0.5 – 150 μs
ΔR	n/a	< 1 m
isolation window	[-100, +400] µs	[-200, +600] μs

- **muon veto:** $\Delta t_{last-\mu} > 1 \text{ ms}$
- OV veto: no OV hit coincident with prompt
- ⁹Li veto: likelihood method trained with ¹²B ⁹Li rejection > 50% with dead time < 0.5%</p>
- "FV veto": point-like characterisation of energy deposit (reject stopping muons)
- IV veto: reject fast-neutrons and accidentals
- light noise: improved criteria on charge isotropy and simultaneity of PMT signals

opened selection cut (more signal) + new vetos (less background)

Neutrino backgrounds

191 ιμ data

Cosmogenetic background β -n emitter (mainly ⁹Li) ■ 0.97 ^{+0.41}_{-0.16} /day previously: 1.25 \pm 0.54 /day

stopping-µ

μ n-Go

Correlated background fast neutrons, stopping- μ

■ 0.60 ± 0.05 /day

previously: 0.67 \pm 0.20 /day

Accidental background

natural radioactivity 0.070 ± 0.005 /day

previously: 0.261 \pm 0.002 /day

less background + more precise measurement of rate and shape

Neutrino candidates

New Gd data set

- data from April 2011 to January 2013
- live time: 467.9 days (previously: 227.9 days)
 - ightarrow including 7.5 days of two reactors OFF data
- 17'358 neutrinos candidates (previously: 8'249 candidates)

statistics of neutrino candidates is doubled

2014 Rate + Shape results (Gd)

 $\sin^2(2 heta_{13}) = 0.090 \stackrel{+0.035}{_{-0.028}}$

previous results: 0.109 \pm 0.039

• excellent spectral distortion in 0.5 – 4 MeV (region constraining θ_{13} fit)

• origin of E/L structure > 4 MeV under investigation (integrated effect negligible on θ_{13})

2014 Two reactors OFF results

- only experiment with 7.5 days of data with all reactors OFF \rightarrow unique opportunity to measure background
- observed events rate: 0.97 ± 0.37 /day vs expected: $1.78 \stackrel{+0.43}{_{-0.19}}$ /day \rightarrow good agreement in 4 8 MeV region, deficit is observed outside

2014 Reactor Rate Modulation analysis

- exploit the 100 % variation in reactor power unique with Double Chooz
- independent measurement of θ_{13} (slope) and background (intercept):

 $\sin^2(2\theta_{13}) = 0.090 \stackrel{+0.034}{_{-0.035}}$ background rate = 1.55 $\stackrel{+0.18}{_{-0.16}}$ /day

- consistent with rate+shape fit and OFF-OFF data
- most precise "rate-only" measurement

STATUS OF THE NEAR DETECTOR

- larger laboratory divided into 3 clean rooms (ISO 5 class air system) in order to parrallelise integration tasks for ≈ 1 year construction
- digging of tunnel + underground laboratory started in 2011
- \blacksquare laboratory fully delivered on May 2013 \rightarrow beginning of the detector integration

Near detector integration progress (1)

Jul/Sep 2013: IV vessel, IV PMTs, buffer vessel welding and installation into IV

Near detector integration progress (2)

Oct/Dec 2013: integration of 330 bottom+side buffer PMTs

Near detector integration progress (3)

Jan/Apr 2014: integration of acrylic vessels and buffer closure (30th April)

Near detector integration progress (4)

May/Jun 2014: last IV PMTs, IV closure, preparation for filling

Summer 2014: filling and commissioning

First detection of neutrinos expected in Sept 2014

Future prospect with near+far detector

- remarquable improvement with the new Gd analysis
- first data near the detector will improve rapidly the precision (projection based on current background model → improvement expected & in preparation)

• expect to challenge a final sensitivity of ≈ 0.01 on $\sin^2(2\theta_{13})$

Talk summary

New results with far detector:

- more statistics, improved selection and background rejection
- $-\sin^2 2\theta_{13} = 0.090 + 0.035 0.028$ fully consistent with previous publications
- new improved H analysis to follow

Near detector integration:

- almost fully completed over the past year
- filling and commissioning to come soon
- detection of first neutrinos expected in Sept. 2014

Coming phase with both detectors:

- quick cancellation of systematics of flux and detection efficiency
- target a final precision of ≈ 10 % on sin²(2 θ_{13})
- investigate further the E/L structure above 4 MeV
- Important contribution from France+Japan through FJPPL program
- Support from TYL for [Nu_03] highly appreciated for coming work: near detector commissioning, filling and on-site shift (mainly travels Japan/France)

BACKUP

E/L structure investigation: robustness of rate+shape fit

- test rate+shape fit with an additional/hypothetical background: n-C-capture-like peak (≈ 5 MeV) with several normalisations and shapes
- largest deviation observed: 0.3 σ on sin²(2 θ_{13}), 0.1 σ on ⁹Li rate, < 0.1 σ on others

 \rightarrow negligible impact on θ_{13}

E/L structure investigation: possible culprits

- detection systematics: no impact on shape
- **energy reconstruction:** C-n peak in GC with Δ (data,MC) < 0.5 % \rightarrow disfavored
- **background:** constrained \rightarrow possible but not only the sole cause
- reactor flux: possible

- 2 reactors ON data 1 reactor ON data = pure 1-ON data (background free) → deviation consistent with observation on rate+shape fit result
- investigation of the region 4 6 MeV (excess of neutrino candidates): → rate is correlated with flux of reactor neutrinos (empirical data-driven observation)

E/L structure vs previous DC results

- same pattern observed in DC-II results with different selection (Gd, H) and detector volume (H)
- better resolved with DC-III (more statistics, better energy scale and less background)