Towards a new era in ultra-high-energy cosmic ray studies

Etienne Parizot & Fujimoto Junpei

Joint TYL/FJPPL-FKPPL Workshop Bordeaux (France) – 26-28 June 2014

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

JEM-EUSO and the UHECR puzzle A space road to the extreme universe!

(NB: UHECR = "ultra-high-energy cosmic rays")

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014

Cosmic rays in the universe

UHECRs: a central scientific issue in astroparticle physics

- \diamond Ultra-high-energy cosmic rays \rightarrow long-standing mystery
- \diamond Protons and atomic nuclei at macroscopic energies (> 10²⁰ eV)
- Sources: unknown
- Acceleration process: unknown
- \diamond Extreme astrophysical sources \rightarrow source modeling
- ♦ General cosmic-ray (astro)physics → particle acceleration, Galactic processes, nucleosynthesis, magnetic fields, interstellar medium, etc.
- & Multi-messenger strategy
- Fundamental physics/high-energy physics/space-time physics issues

CR detection at high energy

 Detection of "extensive atmospheric showers" (cascades of high energy particles in the atmosphere, induced by UHECRs)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

JEM-EUSO: from space!

UV Fluorescence 300 - 400 nm (+ Cherenkov)

FJPPL/FKPPL Workshopp-Bordeaux,x22th June 201044

Scientific context

- Detection of UHECR-induced showers by the fluorescence technique <u>from space</u>
- V telescope onboard the ISS, with Fresnel refractive optics and > 300 000 pixels (single photoelectron sensitive PMTs)
 - $\diamond~\pm 30^\circ$ field-of-view, ISS altitude (400 km), ~190 000 km², 60 000 km² sr yr per year
- ♦ Acceptance: ~10 times Auger
- \diamond Energy range: E > 30 EeV
- Output States States
- Performances and duty cycle now properly worked out
 [main refereed paper: Astropart. Phys. 44, 76 (2013)]
- UHECRs + transient high-energy atmospheric phenomena + meteorites + exotic physics

UHECRs: current status

• **3** steepening above ~60 EeV (probably GZK $\otimes E_{max}$)

Compatible with standard astrophysical expectations

- \Rightarrow very low fluxes, but also good news! (much fewer sources at UHE)
- Very limited statistics at ~100 EeV !
- Low level of anisotropy
 ⇒ ∃ hints, mostly with unclear status
 Does not generate info about sources

➤ Current experiments have shown that there is <u>something to see at</u> UHE, but <u>much larger statistics</u> will be needed to actually see it!

- CR composition becomes heavier at UHE (or showers not understood)
 - → Important information!

Disclaimer

3 good and precious science to be done at lower energy! (Auger, TA)

hadronic physics, composition studies, shower physics, Galactic/extragalactic transition...

But our main interest here

- is: → extreme energy cosmic rays (~100 EeV)
 - \implies the exploration of the UHE universe
 - ➡ the perspective of actually studying the sources

Nota Bene

Take advantage of the GZK cutoff!

- ⇒ At 100 EeV, most of the events come from a handful of events!
- Blaksley & Parizot (2013)

Anisotropy studies with large stat.

Aim of the study:

Assume (300 000 km² sr yr of exposure

- $\begin{cases} \sim \text{ uniform full-sky coverage} \\ \text{even with limited reconstruction performance} \end{cases} \begin{cases} \Delta \theta = 3^{\circ} \\ \Delta E/E = 30\% \end{cases}$
- ⇒ Chosen with JEM-EUSO in mind (next major step in the quest for UHECR sources and the exploration of the UHE universe)

⇒ We also assume the JEM-EUSO detection efficiency as a function of E

[NB: JEM-EUSO's performances will be better (and even much better in a significant subset of events), but we keep low perf. on individual showers to avoid irrelevant objections and show that in the above-mentioned quest, statistics is what matters the most!]

Explore a range of astrophysical models for the origin of UHECRs,

- compatible with current data.
 - Source spectrum
 - ⇒ Source composition
 - ⇒ Source density
 - → Intervening magnetic fields

Anisotropy studies with large stat.

С

Compute UHECR propagation taking into account energy losses, charge modification, magnetic deflections and secondary particles (cf. the standard APC propagation code, Allard et al.)

Build expected sky maps with the relevant statistics at different energies (500 realizations of each astrophysical model framework, to understood the associated "cosmic variance")

E Study the resulting anisotropies through the 2-pt correlation function analysis

Result: For all models, significant anisotropies can be observed!

There is a lot to gain if we can reach an exposure of 300 000 km² sr yr indeed!

The models explored

- Sources are assumed to be "standard candles" (not reasonable, but consequences are understood and under control)
- UHECRs have a mixed composition at their sources cf. Galactic cosmic rays known acceleration mechanisms are not strongly nuclear-type specific
- Maximum energy is proportional to charge

(i.e. the acceleration is not limited by energy loss processes) $E_{\max} \begin{pmatrix} A \\ Z \end{pmatrix} = Z \times E_{\max} (p)$

If $E_{max}(p) \ge 100 \text{ EeV} \implies$ protons dominate at all accessible energiesIf $E_{max}(p) < E_{GZK} \implies$ transition to heavier nuclei \implies Fe nuclei dominate at the highest energies

The models explored

If $E_{max}(p) \ge 100 \text{ EeV} \implies$ protons dominate at all accessible energies

If $E_{max}(p) < E_{GZK}$

- ➡ transition to heavier nuclei
- ► Fe nuclei dominate at the highest energies
- 3 classes of models

$$E_{max}$$
= 4 EeV E_{max} = 15 EeV E_{max} = 300 EeV

Fe-dominated at 60 EeV CNO present at 60 EeV

proton-dominated

2 additional classes of models:

"pure protons"

 \rightarrow similar results as with large E_{max}

NB: appears at odds with Auger results, but may be possible if the showers are not well understood...

¦ "pure Fe"

 \exists secondary protons \rightarrow simulates sub-dominant proton component

```
\implies (could easily exist: different sources should have different E_{max})
```

The models explored

Source distribution

UHECR sources are assumed to be distributed like matter in the nearby universe: we use the 2MRS catalog (Huchra et al., 2012)

Source density The lower the density, the stronger the anisotropies!

Various densities:

 $n_s = 10^{-4} \text{ Mpc}^{-3}$ $n_s = 10^{-5} \text{ Mpc}^{-3}$

Magnetic fields

Extragalactic magnetic field: Kolmogorov-like turbulent field with 1 Mpc coherence length and intensities ranging from 0.1 to 3 nG \rightarrow found to have little incidence on anisotropies

<u>Galactic magnetic field</u>: dominant effect!

➡ Model of Jansson & Farrar (2012)

⇒ + random field + striated field

n_s= 10⁻⁶ Mpc⁻³

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

• 300 000 km² sr yr means typically (somewhat model-dependent):

Auger energy scale \rightarrow 1100 / 250 / 100 events above 50 / 80 / 100 EeV HiRes/TA energy scale \rightarrow 2100 / 580 / 260 events above 50 / 80 / 100 EeV

 \rightarrow We simulate 500 realizations of each astrophysical model, randomly drawing the positions of the sources with the assumed source density

 \rightarrow For each realization, we draw the resulting UHECR sky map with the above statistics (taking into account the detector's angular resolution and energy resolution)

 \rightarrow Then we quantify the associated anisotropy according to the 2-pt correlation function analysis, by comparing with the expectations for an underlying isotropic model (with the same UHECR statistics)

Example for $E_{max}(p) = 15 \text{ EeV}$ and $n_s = 10^{-5} \text{ Mpc}^{-3}$ Sky-map above 80 EeV (Auger energy scale)

Example for $E_{max}(p) = 15 \text{ EeV}$ and $n_s = 10^{-4} \text{ Mpc}^{-3}$ "Auger statistics": 69 events above 55 EeV

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014

Example for $E_{max}(p) = 15 \text{ EeV}$ and $n_s = 10^{-4} \text{ Mpc}^{-3}$

"JEM-EUSO statistics": 1100 events above 50 EeV (Auger energy scale)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014

Example for $E_{max}(p) = 15 \text{ EeV}$ and $n_s = 10^{-4} \text{ Mpc}^{-3}$

"JEM-EUSO statistics": 250 events above 80 EeV (Auger energy scale)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

Example for $E_{max}(p) = 15 \text{ EeV}$ and $n_s = 10^{-4} \text{ Mpc}^{-3}$

"JEM-EUSO statistics": 100 events above 100 EeV (Auger energy scale)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014

Example for $E_{max}(p) = 15 \text{ EeV}$ and $n_s = 10^{-4} \text{ Mpc}^{-3}$

"JEM-EUSO statistics": 2100 events above 50 EeV (HiRes/TA energy scale)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014

Example for $E_{max}(p) = 15 \text{ EeV}$ and $n_s = 10^{-4} \text{ Mpc}^{-3}$

"JEM-EUSO statistics": 570 events above 80 EeV (HiRes/TA energy scale)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

Example for $E_{max}(p) = 15 \text{ EeV}$ and $n_s = 10^{-4} \text{ Mpc}^{-3}$

"JEM-EUSO statistics": 260 events above 100 EeV (HiRes/TA energy scale)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

UHECR anisotropy

The 2-pt correlation function analysis is (just) one way to assess and quantify the anisotropy of a given sky map.

Number of pairs of events

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

UHECR anisotropy

Proton-dominated (E_{max} = 300 EeV), n_s = 10⁻⁵ Mpc⁻³

UHECR anisotropy: unfavorable case

"Pure Fe" model, $n_s = 10^{-5} \text{ Mpc}^{-3}$

Example for the "Pure Fe" model, with $n_s = 10^{-4} \text{ Mpc}^{-3}$

"JEM-EUSO statistics": 570 events above 80 EeV (HiRes/TA energy scale)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

UHECR anisotropy: even less favorable case!

Conclusion

With a full sky coverage and a total exposure of <u>300 000 km² sr yr</u> (or more!), a next-generation UHECR detector would be able to <u>measure</u> <u>significant anisotropies in all the scenarios</u> that we investigated (even for the least favourable source composition and source density)

→ gather key information and constraints on individual sources and source properties!

- Such a detector would make a *qualitative* difference thanks to a *quantitative* difference
 - → Initiate multi-messenger studies with cosmic rays!
- ♦ Excellent precision is not crucial!

In all the above studies, a 30% resolution was assumed \rightarrow it proved to be good enough!

♦ The next step in UHECR science is within reach!

Simulation show that JEM-EUSO appears to have the potential to make that step, and in addition to prepare for even larger exposures, from space!

JEM–EUSO

- Detection of UHECR-induced showers by the fluorescence technique <u>from space</u>
- V telescope onboard the ISS, with Fresnel refractive optics and > 300 000 pixels (single photoelectron sensitive PMTs)
 - $\diamond~\pm 30^\circ$ field-of-view, ISS altitude (400 km), ~190 000 km², 60 000 km² sr yr per year
- ♦ Acceptance: ~10 times Auger
- \diamond Energy range: E > 30 EeV
- Output: Second Secon
- Performances and duty cycle now properly worked out
 [main refereed paper: Astropart. Phys. 44, 76 (2013)]
- UHECRs + transient high-energy atmospheric phenomena + meteorites + exotic physics

International collaboration: strong and active (14 countries, 80 institutions, >250 researchers)

International collaboration: strong and active (14 countries, 80 institutions, >250 researchers)

International collaboration: strong and active (14 countries, 80 institutions, >250 researchers)

 All technical studies, R&D and prototypes have been officially approved and successfully <u>funded by the national agencies</u>

→ Successful development of a complete, fully operational pre-flight model (with all subsystems, hardware and software)

→ Successful integration of the focal surface (Feb./March 2014)
 → EUSO-Balloon (CNES mission, to fly in Aug. 2014)

PDM = photo-detection module (flight model!)

PDM = 36 PMT = 2304 pixels (focal surface of EUSO-Balloon)

Integrated electronics

Japan: PMTs Korea: PDM boards France: front-end electronics

Installation in the APC black box (photo-detection lab)
 Ultra-precise calibration system (<5%) with integrating sphere

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

Thermal and vacuum tests at CNES (Toulouse)

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

EUSO-Balloon

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

JEM-EUSO pathfinders

♦ EUSO-TA

- ♦ Japan/USA initiative and funding
- PDM (photo-detection module) of JEM-EUSO, 2 Fresnel lenses
- Cross-calibration with the Telescope array UHECR experiment in Utah
- ♦ Tests and measurements with artificial showers → end of 2014

♦ EUSO-Balloon

♦ French initiative, funded by CNES

- ♦ 1 PDM of JEM-EUSO, 3 Fresnel lenses
- V background measurement over various landscape/albedo
- Complete test of hardware and trigger software (+ flashers signal)

" June 2014 4

Mini-EUSO:

- ♦ <u>Italian</u> initiative: selected by ASI
- ♦ 1 PDM (photo-detection module) of JEM-EUSO, 2 Fresnel lenses

Inside the ISS (quartz window for UV transmission): 2017

- + ANR Proposal: selected at first stage (2014)
- + European Proposal (H2020) to build the instrument (2015-2016)

, 27 June ZUIA

A NEW ERAIN ONECK Studies – E. Parizot

Future: NASA-led mission?

 NASA: ISS/HSMD is willing to put the JEM-EUSO instrument onboard the ISS if the instrument exists
 (cf. ISS CREA)

(cf. ISS-CREAM)

→ the JEM-EUSO collaboration is seeking a framework to fund the building of the instrument (~100 M€)

→ Multi-agency agreement for "flag ship mission"?
→ ISS

- Active international collaboration: Japan, USA, Europe (9 countries), Korea, Mexico, Russia, Algeria
- NASA vision of a multi-purpose/multi-instrument cosmic-ray observatory on the ISS

 \rightarrow JEM-EUSO included in NASA's road map (dec. 2013)

Mid- and long term

- Develop the space road for UHECR studies
- NB: parallel effort in Russia: ROSCOSMOS program "KLYPVE"
- \Rightarrow JAXA/ISAS proposal for "KLYPVE-EUSO
- Increase performances (SiPM?, free flyer?, stereo instrument?)
- We have "5 orders of magnitude in aperture to go!" (A. Olinto)
 (between the size of Auger and the Earth-wide capacity offered by space)
- ♦ Free-flyer version \rightarrow "Super-EUSO"
- Revival of the "OWL" concept in the USA

Proposal for 2014-2015

- 2014 is a key year in the development of UHECR studies from space:
 - ♦ EUSO-Balloon in operation in space (August 2014)
 - \Rightarrow TA-EUSO in operation on the ground (Summer-Fall 2014)
- Sharing of experience between France and Japan: instrumental aspects
- Joint data analysis and software development
- Develop a common plan for the future of the field, based on the results and experience from EUSO-Balloon and EUSO-TA

 \rightarrow Assessment of performances

 \rightarrow Identify accessible instrumental improvements (PMTs, HW, SF + electronics (also with Korea)

- \rightarrow Develop deeper understanding of UHECR phenomenology/theory
- → Define the "best compromise" with scientific objectives

Proposal for 2014-2015

- Additional theoretical studies:
 - \rightarrow Energy spectra associated with the simulated sky maps
 - → Spectrum fluctuations and spectrum differences
 - \rightarrow Identify discriminating variables
- Link between UHECRs and other messengers
- ♦ High-energy astrophysics
 ♦ X-ray and gamma-ray astronomy
 ♦ AGNs and GRBs
 ♦ particle acceleration

 Complementary expertise in Japan and in France!
 - → source modeling

 Key instrumental work: study of new ASIC (SPACIROC 3 developed by OMEGA + new version of the Korean PDM board)

NB: student from the Korean team currently doing a PhD in Paris!

FJPPL/FKPPL Workshop – Bordeaux, 27th June 2014 4

French Group			Japanese Group		
Name	Title	Lab./Organis.	Name	Title	Lab/Organis.
Parizot Etienne	Prof.	APC/IN2P3	Fujimoto Junpei	A.Prof.	KEK
Gorodetzky Philippe	DR	APC/IN2P3	Arai Yasuo	Prof.	KEK
Prévot Guillaume	Ing.	APC/IN2P3	Kurihara Yoshimasa	A.Prof.	KEK
de la Taille Christophe	Ing.	OMEGA/IN2P3	Kajino Fumiyoshi	Prof.	Konan Univ.
Blin Sylvie	CR	OMEGA/IN2P3	Ikeda Hirokazu	Prof.	ISAS/JAXA
Dagoret Sylvie	CR	LAL/IN2P3	Ebisuzaki Toshikazu	Dir.	RIKEN
Barillon Pierre	Ing.	LAL/IN2P3	Kawasaki Yoshiya	Dr.	RIKEN
Miyamoto Hiroko	Postdoc	LAL/IN2P3	Inoue Naoya	Prof.	Saitama Univ.
Allard Denis	CR	APC/IN2P3	Sagawa Hiroyuki	Prof.	ICRR
Bacholle Simon	PhD	APC/IN2P3	Fukushima Masaki	Prof.	ICRR
Moretto Camille	PhD	LAL/IN2P3	Inoue Susumu	DR	Tokyo Univ.
Rabanal Julio	PhD	LAL/IN2P3	Nagataki Shigehiro	DR	RIKEN
Lachaud Cyril	MdC	APC/IN2P3			
Capdevielle Jean-Noël	Ing.	LAL/IN2P3			
Albert Jean-Noël	DR	APC/IN2P3			
Kegl Balazs	CR	LAL/IN2P3		T	
Semikoz Dmitry	CR	APC/IN2P3			

