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Dark Matter Detection
Brief Introduction
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Dark Matter Evidences

Rotation curve NGC-3198
Bullet-cluster: DM not MOND
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Dark Matter — Direct Detection 4

*Cold Dark Matter Candidates

oAxions

oWIMP’s (weakly interative massive particles) are the favoured
candidates for cold dark matter:

*Neutral in most scenarios
*Requires physics beyond the standard model
... others

*LUX is a Direct Detection experiment

oWe look for scattering of galactic WIMPs with the nucleus of the target material.
o|lsothermal model: expect recoil <10 keV requiring detectors with a very low
threshold.
*Weak interaction
oSpin dependent cross section
oSpin independent x A2
*Chalenge backgrounds

oSea level total muon flux: 55.2 m-2-s (threshold 300 MeV)

o Ambient radioactivity: ~100 evts/kg/s Go underground
oHuman gamma activity 40K: ~4000 y/s

Electron Recoil
(gammas)

Nuclear Recoil
{(neutrons, WIMPs)

o
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Xenon As a Detector Medium

*Why xenon?

oSpin independent cross section

*High atomic mass (A=131 g/mol)
oSpin-dependent isotopes

-129Xe 26.4% and 3'Xe 21.2%
oNo intrinsic backgrounds
oTransparent to own scintillation photons
oLarge light output and fast response
oLong electron drift lengths (~1 m)
oSelf-shielding (using position recons.)
oScalable to multi-ton size

*Recoil energy deposited in:

oLight (photons)
*178 nm VUV photons

oCharge (electrons)
oHeat (not detected).
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Double-Phase TPC

*Primary scintillation (S1)

Secondary scintillation signal from
electroluminescence after drift (S2)

£ *Position reconstruction

S oZ from time difference between S1 and S2
(1.51 mm/us in LUX for a electric field of
| 181 Vicm)
> S oXY reconstructed from light pattern
Particle s ndcatesdepth — observed in the top array.
(. B |\ IS 1 - Typical resolution of some mm.
eS2/S1 used for discrimination
oWIMPs and neutrons interact with the
e sleckon nucleus = short, dense tracks

UV scintillation photons (~175 nm) mage by CH Faham (Brown)

oys and e- interact with the atomic
electrons = long, less-dense tracks

o(S2/S1)ye > (S2/S1)WIMP
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THe LUX Detector — Self Shielding 8

370 kg Liquid Xenon Detector (59 cm height, 49 cm
diameter) in Gas/liquid fases.

0250 kg in the active volume

*Construction materials chosen for low radioactivity: Ti,
Cu, PTFE.

oScreened for radioactivity at SOLO counting facilities
and at LBNL.

122 ultra low-background PMTs (61 on top, 61 on
bottom).

*Active region defined by PTFE (high reflectivity for the
VUV light - high light collection).
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Typical S1+S2 Event in the LUX detector
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LUX AT SURF 10

-

*Sanford Underround Research
Facility SURF, Lead, South
Dakota, USA.

Former Home of the Homestake

Solar Neutrino Experiment
1970-1994

| Raymond Davis
et o S S Tk sonare oo rs (Nobelpriset i fysik
2002)
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LUX AT SURF 1

*LUX operates 4850 feet (1478 m) underground at the Sanford
Underground Research Facility (SURF), South Dakota, US

*Surrounded by a 7.6 m diameter water shield

*Background dominated by construction materials ...

0<2 background events per day in the central 118 kg target in the
energy window of interest... and is decreasing.

Boulby

| Homestake
! Mine —>

1 1478 m deep

?
10° 3
1

Gran Sasso

Homestake Cl-Ar

Muon Intensity, m* y'

Frejus

1] I | |
0 2000 4000 6000 8000
Depth, meters of water equivalent

1 flux reduced by x10-7
(compared to sea level)
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LUX In the Davis CAMP

Control room Breakout system Clean room
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LUX in the water tank, September 2012
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*Detector cool-down January 2013, Xe condensed mid-February 2013

p@‘ (Lgtl@\! K \J@\i

Run 3 data-taking

: m.\’ /»""\.

AL D 9
O A g0

Data-taking April 21 - August 8, 2013, 85 live days
0>95% data taking efficiency over WIMP search region
*Very stable conditions during the run:
o Thermal stability of AT<0.2 K, pressure stability AP/P<1% and liquid level variation <0.2 mm
«83mKr and AmBe calibrations throughout, CHsT after WIMP search (internal calibrations)

*Non-blind analysis

15

[ Development
Troubleshooting

B Calibration

I WIMP search data
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Krypton Calibration

*Xe self-shielding prevents y’s from reaching inner volume

oSolution: Use internal radioactive sources

3Rb produces &3™Kr when it decays; this krypton gas can then

be flushed into the LUX gas system to calibrate the detector

as a function of position.

*Provides reliable, efficient, homogeneous calibration of both

S1 and S2 signals, which then decays away in a few hours,

restoring low-background operation.

krypton is used to
oCorrect S1 and S2 with position

oElectron drift length measurement
*between 90 and 130 cm during the run.

oLight detection efficiency: 14%
oExtraction efficiency: 65%

oLight response functions for the
position reconstruction.
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Electronic Recoil Band Calibration 17

entire spectrum

Tritium source used to calibrate the electronic recoil band.

*Tritium is an ideal source for determination of the
detector’s electron recoil band and low energy threshold

oE(max) - 18.6 keV 0.4
o<E>-5.9 keV 0.2

rel. decay -amplitude
o o
» o

o decay with T(12 = 12.6 a - Long Lifetime o ] 1;_
Tritiated methane was injected in the St <50 P P voume
gas system and removed by the getter. 10 =
| T ,=6%0.5Hours
1 _1:2=6.4 +0.1 Hours i
10 ;
510‘2»

A thwm

-400 -300 -200 -100 O 100 200 300 400 500
Time (hours)

Rate of events with S1 <150 [Phe] in the fiducial volume of the detector. (150
Phe includes the entire tritium beta spectrum).
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ER Band - Tritium Calibration 18

*Parameterize as Gaussian, with power laws for mean and sigma in 1 phe
S1 slices
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/S1) x,y,z corrected

Nuclear Recoil Calibrations

*Recoil band defined by NEST (Noble Element Simulation Technique) which is
based on the canon of existing experimental data

o(see http://nest.physics.ucdavis.edu and JINST 8, 2013, C10003)
*Confirmed with 2'AmBe and 52Cf (external sources)

*GEANT4 + NEST MC was carried out that includes Neutron+X, to allow direct
comparison.

| x [ [ [ [
N
oL R Events at low (S2b/S1) due to neutron+X and multiple scatters where |
A2 B S2 is below reconstruction threshold
- x (all features of calibg, but not WIMPs)
X
— x X x
) -9 e XX X ®
5 o« ‘-%;x*’;—&-i:_.&_’,““_x__“:‘_n_le
X
C\l 1 B ' X X N
C\D/ T\~ - x * X
o ~\d )
— | —~ | |
@)
o 0 10 20 30 40

S1 x,y,z corrected (phe)
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http://nest.physics.ucdavis.edu/
http://nest.physics.ucdavis.edu/

261

2.4

log : 0(SZb/S1 ) X,y¥,z corrected

—— ER band
—— NR band

80 % of the events are
within the ER or NR band

20 30 40
S1 x,y,z corrected (phe)

20
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leakage fraction

10

Electron Recoil Discrimination

5

10 15 20
S1 x,y,z corrected (phe)

90%

99%

99.9%

99.99%

Leakage Fraction: fraction of the events in the ER band that spill over the lower half of the NR band

Average discrimination from 2-30 S1 photoelectrons measured to
be 99.6% (with 50% nuclear recoil acceptance)

discrimination

21
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Light Yield 22

*Modeled using the NEST.

*Artificial cutoff in light and charge yields assumed below 3 keVy, . This is to be
conservative and it does not represent actual physics.

*Includes E field quenching of light signal (77-82% compared to zero field)

0.3 1 —— —— 1 193

i ] — — Aprile 2013
L 025} 7 16.1 Aprile 2011€-—XENON100 limits
= I ] & = Plante 2011
£ : ] &  |===-- Horn 2011a
202 =129 & |----- Horn 2011b
Y <. =  Manzur 2010
S : ] )
> 0.15 97 =
et L . o
O =
> o
s Ol 164 2 NEST:
. o
0 ] = Zero field
> 0.05 132 ——181 V/cm

0 i / L] N | 0
set hard threshol 10 100

nuclear recoil energy (keV)

at 3 keVnr

Monday, March 24, 2014



Gold Efficiency For WIMP Detection 23

*Cumulative efficiency of: finding the S2 pulse, finding the S1 pulse, and finding
(only) one of each in a given event.

«Studied using calibration with neutrons (*'AmBe e #°%Cf) tritium calibration and a
full MC simulation of low energy nuclear recoils.

| ! ! ! ! ! ! o ! ! ! ! ! ! T 2
o AmBe Neutron Calibration S1 data 11.8
>
© 10° F _ Monte Carlo S1 LUXSim/NEST 11.6 %
© O
- - ] O
© [ + gray & red Eff|C|ency from AmBe data/dims ] 1-4 =
2 I )
S | £t
2 T ﬁﬁwﬁw e L
S 10 | 2
O F - rom ER Tritium data '
2 L -0
©
< /From NR NEST Sims
/
/
10° [ L N

10 10'
S1 x,y,z corrected (phe)
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WIMP Detection Efficiency - 24
True Recoil Energy

3 keVnr
S2area ~230 phe (8.9 extracted electrons) Efficiency falls >18 keVnr due

S1area ~2.0 phe S1[2,30] phe range

— + ,,,,,, T Befoeanyanayssouts -
I L e S1_ pulse identification -~ 4

: : _'¢'_ .\ o : : : :
R SN R 43 kev nr50 A’ N S2 pulseidentification =
B _¢,_ ..... B S1_+S.2.sm.g_le,s_ld_en.tlflcatlon_.4_j 44444
I | =¢= | ...... B 3 kevnr 17% | ..... ........ Includmg analySIS CU’[S ....... e '. ]
I 44444 ...... .. - ...... ..... ..... ........ EfflClency for S1+82 |dent|f|cat|on i
. —qi_'_ ..... ...... ..... ...... ..... (S1area>2 pheszarea>200 phe)

(l) é éll é £|3 | 1|O | 1|2 | 1|4 | 1|6 | 1|8 | 20

recoil energy (keVnr)

True Recoil Energy equivalence based on LUX 2013 Neutron Calibration/NEST Model
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Overall y Spectrum - high energy
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oFull gamma Spectrum , excluding region 2 cm from top/bottom grids.
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Background From Xe-127

Electron capture from S-wave orbital: -

20

Simulation results

Probability Density Functio
. .. 1keVee
p+e —n+r,
5 2
% . okeVee
Q e
Energy released via cascade x-rays, or Auger §) EZ%E:E}EE—%—EE:
electrons. Total binding energy shown, and also S R = =T
expected EC probability from that shell 'év 1.5 =
K shell (35 keV) (85%) or Internal Conversion Electron(s)
tiz = 36 days L shell (5.5 keV) (12%)
M shell (1.2 keV) (2.5%) Gamma Intensities
N,O shells (02 keV) (05%) 375 keV (|7%) 1
202 keV (68%)
172 keV (26%) 0.2 keVee
145 keV (4.3%)
58 keV (1.2%) 0.5
0 5 10 15 20 25 30 35 40
S1ic (phe)

Ve-

Predict 15 events in WIMP search data

Height [em]

0 5 10 15 20

Radlus [cm)
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Radon-related backgrounds

The Uranium-238 Decay Chain

Atomic Number

The Thorium-232 Decay Chain

Atomic Number

82 83 84 85 R6 87 88 89 90 91 02 81 82 83 84 85 86 87 88 89 90
Only main decays are shown _ Ra-228| (. |Th-232
Gamma emitters are not indicated Th-234| o |u-238 Only main decays are shown 575a | € 1.4x10%

2414 [€ |, 000, Gamma emitters are not indicated o
N B Tac228
B Tra-234 6.15 h 8
117 m ls \
g :J N Pb-212 @DPO-ZW @ Rn220] O |Ra224| o |Th-228
O ) Rn-222 l O |Ra226| O |Th230| o |U-234 106h 0.15s 556 s 366d €= 191a
3.82d 1600 a 7.7x10%a D 2 4x10°a B
T-208 (o ) Bi212
2 m\. : [3 Element Names Half-life units
o . R
Th = thonum d - days Stable 0.3x10 Ac - actinium h - hours
Ra - radium h - hours Rn - radon m - minutes
Pa - protactinium m - minutes Po - polonium s - seconds
Rn - radon s - seconds Bi - bismuth
Po - polonium Pb - lead
Bi - bismuth TI - thallium
Pb - lead
H H (1 b
0214Ph has a half-life of 27 minutes and undergoes “naked
| | o | | | | | |
beta decay with 11% probability. This generates a low-
Sotential energy ER background in the WIMP search region in the
otentia

backgrounds in DM
search region

fiducial volume.

0?14Bj and #'?Bi  decays are vetoed at the 90% level due to
the low half-life of heir daughters.
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Background From Pb-214/Kr-85 28

85Kr - beta decay - intrinsic background in T 1 10-Ty
liquid Xenon SKr 4%

oKr concentration reduced from 130 ppb to 3.5 ppt 99.6% 514 keV

(factor of 30,000) using a chromotographic ©
system developped by the LUX collaboration
Qg = 687 keV 35Rb
' {CRUMEq)
. 4 9y |

Height [cm]

Predict 10 events in WIMP search data

0
0 5 10 15 20

Radius [cm)
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Low Energy Backgrounds 29

*Monte Carlo predictions of low-energy ER background rates from all significant
sources, 118 kg fiducial and 0-8 keVee energy

3
Background Source 10~ x evts/keVee/
Component kg/day
Internal :

i + + observed simulated
y-rays Components 1.8_0.23tat_0.3sy3 0.1F |
127X (36.4 da Cosmogeri > ——
half_“f(G) y 087 _fg?ggdir;:ﬁg un O5i0023tati0 1 sys g 0.08F ‘L

0.07 - T
214 222 £ | -
Pb Rn 0.11-0.22(90% cv) = 008 - |
2 [T
Reduced from © i |
Total Predicted Total 2.640.25ta20.4sys OO
é 110 115 210 215 3]0 3'5 410 415 50
Observed Total 3.60. 24t Sz comected (phe)
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Observed Backgrounds 30

All the run Last 44 days

Measured DRU (89 livedays, 89 eff)  log,,(DRUee) Measured DRU (44 livedays, 44 eff)  log,,(DRUee)
50
0 0
45
-0.5 -0.5
40
1 — 35 --1
&
©,
= 30
- 15 _5_) --1.5
£ 25
-2 -2
20
I -3 10 -3
0 200 400 600 0 200 400 600
Squared radius [cm2] Squared radius [cm2]

r<18 cm z=7-47 cm
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Run 3 event selection and cuts

Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

*We aimed to apply minimum set of cuts in order to reduce any
tuning of event cuts/acceptance.

*The cut list is very short.

*Hardware trigger: at least two trig. channels > 8 phe within 2 ys
window (16 PMTs per trig. channel)
0> 99% efficient for raw S2 > 200 phe (~8 e’).
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32

Cut Events Remaining

All Triggers 83,673,413
|Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

*Remove periods of live-time when liquid level, gas
pressure or grid voltages were out of nominal ranges:

oLess than 1.0 % live-time loss!
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Cut Events Remaining

All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1+1 S2 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

*Exactly 1 S2 and 1 S1 as identified by the pulse finding and
classification code:

oSeparate S1s from S2s using pulse shape and PMT hit distributions.
0S1s identification includes a two fold PMT coincidence requirement.
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Cut Events Remaining

All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 +1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

*Accept events with S1 between 2-30 phe (0.9-5.3 keVee,
~3-25 keVnr):
oWe impose that at least 2 PMTs are above threshold.

o2 phe analysis threshold allows sensitivity down to low WIMP masses.
Expected S1 for a 3 keVnr event is 1.94 phe.

oUpper limit of 30 phe avoids '?"Xe 5 keV.e activation.
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Cut Events Remaining

All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 +1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

*S2 threshold cuts subdominant to S1:

0200 phe ~ 8 single electrons
oRemoves small S2 edge events and single electron events
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 +1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

*Require less than 100 phe (< 4 extracted electrons) of

additional signal in 1 ms period around S1 and S2 signals:

oSimple cut to removes additional single electron events in 0.1-1 ms
following large S2 signals

oOnly 0.8% hit on live-time

36
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 +1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

Fiducial Cut: radius < 18 cm, 38<drift time<305 ps, 118.3+-6.5 kg fiducial

oLow energy alpha-parent nuclear recoil events generate small S2+S1 events. The radius
and drift time cuts were set using population of events which had S1’s outside of the
WIMP signal search range, but with S2’s of a comparable size to lower S1 events in same
population. This ensured that position reconstruction for sets were similar, and definition
of fiducial was not biased.

oCuts also remove corner regions where ER event rates are proportionally very high.
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+ | | | |
2.61 » 160 events observed
4\, 1.9 events/day

2.4+ E& ER Calibration 99.6£0.1% leakage below NR mean, -
T e so expect 0.64 +/- 0.16 for 160 events
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Setting the Limit — PRL 40

*Use of Profile Likelihood Ratio (PLR)

oWe don’t have to draw acceptance boxes avoiding potential bias in data analysis from
selecting regions in $1,S2 signal-space.

s = —2log

L

Fixed point to test

% =_—Nuisance parameters,
(O-testa Hj/

£

4]

not fixed

Value of maximum likelihood

*Generate pseudo-experiments for otst, compare the value of test
statistic in data with the value of qc, from each pseudo-experiment and

from that get the p-value.
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Setting the Limit - the Likelihood 4

N
LWS X H |:NSPS(m; g, 88) + NComptPER(m; HCompt)
1=1

+Nxe_127PEr(®; 0xe—127) + NRu—_122 PER(T; HRn)}

Discriminant between ER/NR
\ Discriminants against

Energy | e
\ /external/lnternal radiation
Observables: x = (S1, 10g10(S2/S1), r, 2)
Parameter of interest: Ns

Nuisance parameters: Ncompt, Nxe-127, Nrn/kr-85

/

Gaussian constrain to within 30% of the predicted rates 39
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Modeling The Signal

from the nuclear band parametrization Ps is uniform in r> and z
P(x;0,0,) :‘PNR(loglo (52/51) |51 PS(ENR(Sl)*PS(r)PS(z)

contains the WIMP recoil energy spectrum
dR dENR

FolBvn(81)) = (51 g Gwnees e 85)= 567

WIMP spectrum (we used the standard!)

o o= £ 2400¢

s S 45000] g 2200

2 2 40000} £ 2000}

& 2 35000 100 GeV /c2 WIMP & 1800f 2 TeV /c2 WIMP
= £ 30000} €

s > 25000 s

w w i W

20000 |
15000+
10000}
5000F

80 100 0 20 40 60 80 100
Enr [keV] Enr [keV)
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Setting the Limit - The Signal 43

*For a 1000 GeV WIMP and cross section at the *For 8.6 GeV WIMP at 2.0x10-4' cm2, CDMS
existing XENON100 90% CL Sensitivity 1.9x104 cm? I Si (2012) 90% CL.:

oexpect 9 WIMPs in LUX search oexpect 1550 WIMPs in LUX search
WS from PDF (131018) (Currie/Gaitskell) WS from PDF (131018) (Currie/Gaitskell)
mW = 1000.0 GeV cs =1.5e-44cm2 n=7 mW = 8.6 GeV cs =2.0e-41 cm2 n =1545
25 -2 2.5 -2
Probability Density Function (PDF) -
E _ for WIMP Signal Note how WIMP distribution appear

25 '3 below the calibration NR mean ... 25

1.5¢

log10(S2bc/sic)
|
W
()]
log10(S2bc/sic)

il ... the shiftbeturs because for a given S2 value
the S1is more likely fo have up-fluctuated in 45
order to appear above threshold

0.5 -5 0.5 -5
0 5 10 15 20 25 0 5 10 15 20 25
S1ic (phe) S1c (phe)

PDF assumes Standard Milky Way Halo parameters as described in Savage, Freese, Gondolo
(2006) vo=220 km/s, Vescape = 544 kmls, Po = 0.3 GEV/CZ, Vearth = 245 kml/s.
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Fit Projections

44

S1 fit projection
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log , 0(SZb/S1 ) X,y,z corrected

Profile-Likelihood Analysis shows a p-value |

of 35% consistent with ER background and |
no WIMP signal

R )
A L * .
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) +++ + ++ .|.++.h.-£|.+.|:|'|-+ % .|..;|.‘|I'_++ ++ .
\ I+ * +:*:#"-i- * . +¢+*:+++ g + 7 -
AN b g + L LTI
.:-+ R SR P +
* +++ -I"+.:-+ ++++#+¢+
¥ + Lo+ + +-l+ -'ﬁ-+‘

10 20 30 40 50
S1 x,y,z corrected (phe)
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Spin-independent sensitivity plots

46

WIMP-nucleon cross section (cm2)

10

L L

LUX (2013)-85 live days

I

[ JCRESST-II
[ ]CDMS-II Si 90% CL

x  CDMS-II Si ROI Centroid
[ 1CoGeNT 2013
[ IDAMA/LIBRA
—— XENON100 225 days

XENON100 100 days

—— CDMS-II all Soudan data
—— CDMSlite
——— ZEPLIN-III
——— EDELWEISS

—— CDMS-II Ge 2keV threshold re-analysis|

—— XENON10 S2-only
—— SIMPLE

L

10 10
leMP (

GeV/c?)
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WIMP-nucleon cross section (cm2)
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Current WIMP Cross-section Limits

43

WIMP-nucleon cross section [cm?]
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A neutron walks mto d bar 8llﬂ ‘
asks; ""OW lllllch fora heerﬁ"'

Ile IBNIBS "for Uﬂll llﬂ charge"'

DD Calibrations
(LUX Preliminary Results)
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Deuterium-Deuterium 50
Beam Calibrations

*Neutron generator/beam pipe assembly aligned 15.5 cm below liquid
level in LUX active region to maximize usable single / double scatters
oBeam Energy 2.5 MeV (elastic scattering dominant)
oBeam leveled to ~1 degree
0105.5 live hours of neutron tube data used for analysis
o Complete Geant4d LUXSim + NEST simulation of D-D neutron calibration

LUX 25! D(D,n) Neutron Generator Data
Preliminary | '€ Neutron beam o —NR Band - LUX PRL
L TN e TN 25 - 8 —NR Band - DD with 200 phe S2 Threshold
20 ~ 3'. § ) gt ~+200 phe S2 Threshold
— s WY.L O
£ 101 @@ s 99 < >
ST EGE el [ 2
O ke I 42N /‘ e 4 2] —
Q : 74 BYAL A : 3 IS n
€ o S BT R = 2,
o Y. SN, '.\..r‘:'~ & RS0 A JPRE. 8 o
5 &@@@fﬁq qi% 1172 %
8 : :l./xf Kn‘%;f,‘ R 2 8;- 1
> -10: ‘@I@ﬁA i - LUX
R 43 4P
C N i(?.&" 4 C _ Preliminary e
PR\ ,}{_»;@_’f, o 05 e _
_20';ﬁﬁ;ﬁﬁ;i C SRS ,:__':j;ﬁj;jﬁéiﬁ;ﬁﬁ;ﬁ 0 5 10 15 20 25 30
PR | P .. culba R . | S1 x'y'z corrected (phe)

-20 -10 0 10 20

x corrected (cm) Agrees with NR Band used in LUX 2014 PRL

Accepted Dark Matter Result arXiv:1310.8214v2

Monday, March 24, 2014


http://arxiv.org/abs/1310.8214v2
http://arxiv.org/abs/1310.8214v2

Deuterium-Deuterium 3
Double-scattering events
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Samuel Chan, Carlos Faham for the LUX Collaboration
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Deuterium-Deuterium 5
lonization Yield

2 Ll Ty PRL threshold
3 siars T ‘ > 1
2 - :Jq', ¢ 2, -
2 St £ 1 QIat Sys. Error on
g PRI P > Blue Points +
@ 10 ~—< = (1-sigma) t
5 L 5 = | ' t
g —|—/ .
§ S L T
—'"/, E .............
7 D
10" S ¥ > T
10 _ 10 =
Energy Measured from Scattering Angle [kevma] 8
S Analysis cut-off
* Reconstruct number of electrons at = 0.7 keVara
interaction site by matching ionization signal o
model with observed event distribution using 10 ) -
binned maximum-likelihood 10 10

Energy Measured from Scattering Angle [keVnra]
* Systematics associated with threshold

correction discussed in extra slides
Blue Crosses - LUX Measured Qy; 181 V/icm (absolute energy scale)

Green Crosses - Manzur 2010; 1 kV/cm (absolute energy scale)
Purple Band - Z3 Horn Combined FSR/SSR; 3.6 kV/cm (energy scale from

* Systematic error of 7% from threshold
correction for (lowest energy) 0.7-1.0 keVnra
bin

best fit MC)
* Red systematic error bar shows common
scaling factor uncertainty. Dominated by
uncertainty in electron extraction efficiency. Black Dashed Line - Szydagis et al. (NEST) Predicted lonization Yield at
181 V/cm
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Deuterium-Deuterium 53
Scintillation Yield

*Use single scatters with suitable
selection criteria

*NEST based MC used to simulate y
expected single scatter energy , L1
spectrum with LUX threshold, purity, i
electron extraction, energy resolution 510 Rt
effects applied

*First bin conservatively begins at 50
phe S2bc to avoid spurious single
electron coincidence

LUX Leff values currently reported at | _ |
181 V/cm as opposed to the traditional 10° 10’ 10
zero field value. Energy (keV ;)

’ Energy scale defined usmg LUX Blue Crosses - LUX Measured Lef; reported at 181 V/cm (absolute energy
measured Qy scale)

*X error bars representative of error ©'°¢" ©10%5¢s - Manzur 2010, 0 Viem (absolute eneray scale)

. . . Purple Band - Horn Combined Zeplin lll FSR/SSR; 3.6 kV/cm, rescaled to 0 V/
on mean of population in bin cm (energy scale from best fit MC)

LUX
PRL threshold

Black Dashed Line - Szydagis et al. (NEST) Predicted Scintillation Yield at 181
V/em
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Future Plans

Monday, March 24, 2014



— — — - —
o o o o o

WIMP-nucleon cross section (cm2)

-
o

10

|
N
o

|
N
—

|
N
N

|
N
w

|
N
o

|
N
o

48|

LUX 300 day run

L UX (2013)-85 live days

mWIMP (

GeV/cZ)

300 day run planned for 2014/2015

oStill not background limited and expect factor of ~5 improvement in sensitivity —

discovery possible

10°

oPotential for improvements to E fields/calibrations /reconstruction
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Longer term: LUX-ZEPLIN (LZ) %0

20 times LUX Xenon mass, active scintillator veto, Xe purity at sub ppt level

Ultimate direct detection experiment - approaches coherent neutrino scattering
backgrounds

*Proposal for US down-select process end of Nov., decision expected Jan 2014
oIf approved will be deployed Davis lab 2016+

Same water tank as LUX

40

T

LUX Today
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Limit on Nucleon <(Sl),

50 GeV WIMP

Historical Progress in the Limits
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CONCLUSIONS o8

LUX has made a WIMP Search run of 86 live-days and released the analysis
within 9 months of first cooling in Davis Lab
oBackgrounds as expected, inner fiducial ER rate <2 events/day in region of interest

oMajor advances in calibration techniques including ™Kr and Tritiated-CHs injected
directly into Xe target

oVery low energy threshold achieved 3 keVnr with no ambiguous/leakage events
oER rejection shown to be 99.6+/-0.1% in energy range of interest

*Intermediate and High Mass WIMPs
oExtended sensitivity over existing experiments by x3 at 35 GeV and x2 at 1000 GeV

*Low Mass WIMP Favored Hypotheses ruled out

oLUX WIMP Sensitivity 20x better

oLUX does not observe 6-10 GeV WIMPs favored by earlier experiments
*Neutron DD Calibrations

*Results published in

oLUX Main Results PRL 112, 091303 (2014)
oRadiogenic and Muon-Induced Backgrounds in the LUX (arXiv 1403.1299)
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http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.112.091303
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