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Dark Matter Evidences 3

Bullet-cluster: DM not MOND

D. Clowe, et al

2.2. Evidence for dark matter

Figure 2.2: Rotation curve of spiral galaxy NGC-3198. The sum of disk and expected
dark matter halo contributions match the observations [14].

between baryonic or dark origin. In fact, gravitational lensing was first suggested by

Zwicky as a viable technique to measure the mass distribution in our Universe [15].

We distinguish between three different classes of gravitational lensing: strong, weak

and micro lensing. Strong lensing distorts the images of the lensed objects to great

extent, resulting in clearly visible arcs and multiple images of the same source. On the

contrary, micro-lensing imposes no visible distortion on the shape, but the amount of

light detected from a background source changes over time.

The weak lensing technique is based on the statistical analysis of numerous weakly

lensed sources and is most commonly used for large sky surveys. When observing a

preferred direction in the distortion of the intrinsic shape of captured galaxies, mass

distributions in the area may be reconstructed. Recent advances in this technique,

utilising the redshift dependence (higher redshift galaxies experience stronger shear

distortion), enable the recovery of the full three-dimensional gravitational potential

of the matter density, resolving large scale structures in both angle and time. This

was achieved, for example, by studying the weak lensing data from the Hubble Space

Telescope (HST)/Space Telescope A901/902 Galaxy Evolution Survey (STAGES) [16].

A very prominent example, demonstrating the presence of dark matter using the

technique of weak gravitational lensing, is the observation of the Bullet cluster [17],

a merger of two galaxy clusters. When the two clusters collided, the fluid-like x-ray

emitting hot gas or ICM was spatially separated from the visible stellar components,

which simply passed through each other. However, the gravitational potential does

not trace the ICM, the dominant baryonic mass fraction, but, rather approximately,
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Rotation curve NGC-3198

Dark Matter
Ordinary Matter

≈ 5.44 ± 0.14
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Dark Matter – Direct Detection

•Cold Dark Matter Candidates
oAxions
oWIMP’s (weakly interative massive particles) are the favoured                                               
candidates for cold dark matter:
• Neutral in most scenarios
• Requires physics beyond the standard model

o ... others
•LUX is a Direct Detection experiment

oWe look for scattering of galactic WIMPs with the nucleus of the target material.
o Isothermal model:  expect recoil <10 keV requiring detectors with a very low 
threshold.

•Weak interaction
oSpin dependent cross section
oSpin independent

•Chalenge backgrounds 
oSea level total muon flux: 55.2 m-2·s-1 (threshold 300 MeV)
oAmbient radioactivity: ~100 evts/kg/s 
oHuman gamma activity 40K: ~4000 γ/s

4

∝ A2

Go underground
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Xenon As a Detector Medium

•Why xenon?
oSpin independent cross section

• High atomic mass (A=131 g/mol) 
oSpin-dependent isotopes

• 129Xe 26.4% and 131Xe 21.2%
oNo intrinsic backgrounds
oTransparent to own scintillation photons 
oLarge light output and fast response
oLong electron drift lengths (~1 m) 
oSelf-shielding (using position recons.)
oScalable to multi-ton size

•Recoil energy deposited in:
oLight (photons)

• 178 nm VUV photons
oCharge (electrons)
oHeat (not detected).
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Figure 1. Predicted integral spectra for WIMP elastic scattering (left) and for coherent neutrino-nucleus

elastic scattering (right) for Xe, Ge, Ar and Ne (in order of decreasing rate at zero threshold). Both plots

assume perfect energy resolution. Dark matter rates are for a 100 GeV/c
2

WIMP with 10
−45

cm
2

(10
−9

pb)

interaction cross section per nucleon, calculated as per [21] with the halo parameters shown; the markers

indicate typical WIMP-search thresholds for each technology. CNS rates are calculated at 10 m from a

3 GWth nuclear reactor (4 ·10
13 ν/cm

2
/s) and at the same distance from the ISIS neutron spallation source

(thanks to E. Santos), where 3 neutrino flavors result from pion and muon decay at rest (1 ·10
7 ν/cm

2
/s for

all flavors [34]).

quarks: for neutrons it is σν ,n ≈ 0.42 · 10
−44(Eν/MeV)2

cm
2
, whereas for protons it is a factor

of ∼200 smaller. Therefore, the effect of coherence over the whole nucleus is an enhancement

factor of N2
. For example, for 10 MeV neutrinos, the cross section for scattering on a Xe nucleus

is σν ,Xe ∼ 2 ·10
−39

cm
2
; for Ar it is an order of magnitude smaller, σν ,Ar ∼ 2 ·10

−40
cm

2
. Although

these values are even smaller than those expected for WIMPs, significantly higher fluxes can be ob-

tained with neutrinos from artificial sources (∼10
13

cm
−2

s
−1

at a distance of ∼10 m from a nuclear

reactor, to give one example). Calculated rates as a function of threshold for two neutrino sources

are shown in Figure 1 (right). In addition, ‘on/off’ experiments are also possible in this instance,

which is a significant advantage for controlling systematic uncertainties. Therefore, detectors with

a mass of the order of kilograms can, in principle, provide a reasonable rate. However, one must

not neglect the fact that, contrary to WIMP searches, where only a few events with correct signa-

ture could constitute a discovery in a nearly background-free experiment conducted underground,

a neutrino experiment in a surface laboratory must accumulate enough recoil signals to produce

a statistically significant distribution in energy (or in the number of ionization electrons, as only

few-electron signals can be expected for MeV neutrinos [24, 36, 37]).

The low scattering rate makes the background issue of extreme importance. Background re-

duction (passive shielding, low radioactivity environment and radio-clean construction) and its

active discrimination in the experimental setup are essential. In the case of direct dark matter

searches in underground laboratories, two kinds of background can be distinguished: one resulting

in electron recoils and the other leading to production of nuclear (atomic) recoils in the sensitive

– 6 –
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Double-Phase TPC

•Primary scintillation (S1)
•Secondary scintillation signal from 
electroluminescence after drift (S2)

•Position reconstruction
oZ from time difference between S1 and S2 
(1.51 mm/µs in LUX for a electric field of 
181 V/cm)

oXY reconstructed from light pattern 
observed in the top array.
• Typical resolution of some mm.

•S2/S1 used for discrimination 
oWIMPs and neutrons interact with the 
nucleus ⇒ short, dense tracks

oγs and e- interact with the atomic 
electrons ⇒ long, less-dense tracks

o(S2/S1)γe > (S2/S1)WIMP 

6
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THe LUX Detector – Self Shielding

•370 kg Liquid Xenon Detector (59 cm height, 49 cm 
diameter) in Gas/liquid fases.

o250 kg in the active volume
•Construction materials chosen for low radioactivity: Ti, 
Cu, PTFE.

oScreened for radioactivity at SOLO counting facilities 
and at LBNL.

•122 ultra low-background PMTs (61 on top, 61 on 
bottom). 

•Active region defined by PTFE (high reflectivity for the 
VUV light - high  light collection).

8

49 cm 
59 cm 
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Typical S1+S2 Event in the LUX detector 9

electron recoil 
of 1.5 keV
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LUX AT SURF 10

Raymond Davis
(Nobelpriset i fysik 

2002)

•Sanford Underground Research 
Facility SURF, Lead, South 
Dakota, USA.

•Former Home of the Homestake 
Solar Neutrino Experiment 
1970-1994
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Muon flux reduced 

SUR

LUX AT SURF 11

Homestake 
Mine

1478 m deep

 µ flux reduced by x10-7 
(compared to sea level)

•LUX operates 4850 feet (1478 m) underground at the Sanford 
Underground Research Facility (SURF), South Dakota, US

•Surrounded by a 7.6 m diameter water shield
•Background dominated by construction materials ... 

o <2 background events per day in the central 118 kg target in the 
energy window of interest… and is decreasing.
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LUX In the Davis CAMP 12

Clean room

Water tank

Cryostat

Control room Breakout system
Liquid nitrogen system

Xenon 
recovery
bladder Gas system
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Davis Cavern SURF - Upper Floor, September 2012
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LUX in the water tank, September 2012
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Run 3 data-taking

•Detector cool-down January 2013, Xe condensed mid-February 2013
•Data-taking April 21 - August 8, 2013, 85 live days

o>95% data taking efficiency over WIMP search region 
•Very stable conditions during the run:

o Thermal stability of ∆T<0.2 K, pressure stability ∆P/P<1% and liquid level variation <0.2 mm
•83mKr and AmBe calibrations throughout, CH3T after WIMP search (internal calibrations)
•Non-blind analysis

15
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Krypton Calibration

•Xe self-shielding prevents γ’s from reaching inner volume
oSolution: Use internal radioactive sources

•83Rb produces 83mKr when it decays; this krypton gas can then 
be flushed into the LUX gas system to calibrate the detector 
as a function of position.

•Provides reliable, efficient, homogeneous calibration of both 
S1 and S2 signals, which then decays away in a few hours, 
restoring low-background operation.

•krypton is used to
oCorrect S1 and S2 with position
oElectron drift length measurement

• between 90 and 130 cm during the run.
oLight detection efficiency: 14%
oExtraction efficiency: 65%
oLight response functions for the                               position 
position reconstruction.
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•Tritium source used to calibrate the electronic recoil band.
•Tritium is an ideal source for determination of the 
detector’s electron recoil band and low energy threshold

oE(max) - 18.6 keV 
o<E> - 5.9 keV
oβ decay with T(1/2) = 12.6 a - Long Lifetime

•Tritiated methane was injected in the                                                                           
gas system and removed by the getter.
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Electronic Recoil Band Calibration 17
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ER Band – Tritium Calibration

•Parameterize as Gaussian, with power laws for mean and sigma in 1 phe 
S1 slices
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Nuclear Recoil Calibrations 19
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Events at low (S2b/S1) due to neutron+X and multiple scatters where 
S2 is below reconstruction threshold 
(all features of calibs, but not WIMPs!)

•Recoil band defined by NEST (Noble Element Simulation Technique) which is 
based on the canon of existing experimental data

o(see http://nest.physics.ucdavis.edu and JINST 8, 2013, C10003)
•Confirmed with 241AmBe and 252Cf (external sources)
•GEANT4 + NEST MC was carried out that includes Neutron+X, to allow direct 
comparison.
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20

ER band
NR band

80 % of the events are 
within the ER or NR band
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Electron Recoil Discrimination

Average discrimination from 2-30 S1 photoelectrons measured to 
be 99.6% (with 50% nuclear recoil acceptance)
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Light  Yield

•Modeled using the NEST.
•Artificial cutoff in light and charge yields assumed below 3 keVnr . This is to be 
conservative and it does not represent actual physics.

•Includes E field quenching of light signal (77-82% compared to zero field)

22

set hard threshold 
at 3 keVnr !
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Gold Efficiency For WIMP Detection

•Cumulative efficiency of: finding the S2 pulse, finding the S1 pulse, and finding 
(only) one of each in a given event.

•Studied using calibration with neutrons (241AmBe e 252Cf) tritium  calibration and a 
full MC simulation of low energy nuclear recoils.
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WIMP Detection Efficiency -
 True Recoil Energy

24
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Including analysis cuts:
Efficiency for S1+S2 identification 
( S1area>2 phe, S2area>200 phe )

True Recoil Energy equivalence based on LUX 2013 Neutron Calibration/NEST Model

S1area ~2.0 phe
S2area ~230 phe (8.9 extracted electrons)

3 keVnr 17%

4.3 keVnr 50%

7.5 keVnr >95%

3 keVnr
Efficiency falls >18 keVnr due 
S1 [2,30] phe range
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Overall γ Spectrum – high energy 25

oFull gamma Spectrum , excluding region ±2 cm from top/bottom grids.

3
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(238U)
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129mXe

FIG. 2. Measured gamma energy spectrum in the 270 kg LUX drift region (black). Measured spectrum includes both single
and multiple scatter events, and is reconstructed from combined S1 and S2 signals. No fiducial cuts are used. The high-energy
spectrum from simulation (red) is also shown based on best-fit parameters with measured data. Simulations feature gammas
generated from 238U, 232Th, 40K, and 60Co decays, spread over the top, bottom, and side construction materials adjoining
the active region, as well as activated xenon evenly distributed in the bulk. The best-fit spectrum was matched to data over
13 slices in depth, for energies >500 keVee. [2]

[1] First results from the LUX dark matter experiment at the Sanford Underground Research Facility – D. Akerib et al. -
Submitted to PRL (2013)

[2] LUX Backgrounds Paper, in preparation.

black = measured

red = simulated - best fit
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Background From Xe-127

•Electron capture from S-wave orbital: 

26

p+ e− → n+ νe

Simulation results

for (log(S2/S1), 
S1)

Predict 15 events in WIMP search data
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Radon-related backgrounds 27

Potential 
backgrounds in DM 

search region

o214Pb  has a half-life of 27 minutes and undergoes “naked” 
beta decay with 11% probability. This generates a low-
energy ER background in the WIMP search region in the 
fiducial volume.

o214Bi and 212Bi β decays are vetoed at the 90% level due to 
the low half-life of heir daughters.
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Background From Pb-214/Kr-85 28

214Pb and 85Kr 
Uniform in (r,z)

Predict 10 events in WIMP search data

85Kr - beta decay – intrinsic background in 
liquid Xenon

oKr concentration reduced from 130 ppb to 3.5 ppt 
(factor of 30,000) using a chromotographic 
system developped by the LUX collaboration  

Xe

Kr
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Low Energy Backgrounds 29

•Monte Carlo predictions of low-energy ER background rates from all significant 
sources, 118 kg fiducial and 0–8 keVee  energy

Background 
Component Source 10-3 x evts/keVee/

kg/day

γ-rays Internal 
Components 1.8±0.2stat±0.3sys 

127Xe (36.4 day 
half-life)

Cosmogenic
0.87 -> 0.28 during run 0.5±0.02stat±0.1sys

214Pb 222Rn 0.11-0.22(90% CL)

85Kr Reduced from 
130 ppb to 3.5±1 ppt 0.17±0.07sys

Total Predicted Total 2.6±0.2stat±0.4sys

Observed Total 3.6±0.2stat 

observed simulated
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Observed Backgrounds 30

All the run Last 44 days

r<18 cm z=7-47 cm
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Run 3 event selection and cuts 31

Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•We aimed to apply minimum set of cuts in order to reduce any 
tuning of event cuts/acceptance. 

•The cut list is very short.
•Hardware trigger:  at least two trig. channels > 8 phe within 2 µs 
window (16 PMTs per trig. channel)

o> 99% efficient for raw S2 > 200 phe (~8 e-).
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32

Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Remove periods of live-time when liquid level, gas 
pressure or grid voltages were out of nominal ranges:

oLess than 1.0 % live-time loss!
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33

Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Exactly 1 S2 and 1 S1 as identified by the pulse finding and 
classification code:

oSeparate S1s from S2s using pulse shape and PMT hit distributions.
oS1s identification includes a two fold PMT coincidence requirement.
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34

Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Accept events with S1 between 2-30 phe (0.9-5.3 keVee, 
~3-25 keVnr):

oWe impose that at least 2 PMTs are above threshold.
o2 phe analysis threshold allows sensitivity down to low WIMP masses. 
Expected S1 for a 3 keVnr event is 1.94 phe.

oUpper limit of 30 phe avoids 127Xe 5 keVee activation.
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35

Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•S2 threshold cuts subdominant to S1:
o200 phe ~ 8 single electrons
oRemoves small S2 edge events and single electron events 
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Require less than 100 phe (< 4 extracted electrons) of 
additional signal in 1 ms period around S1 and S2 signals:

oSimple cut to removes additional single electron events in 0.1-1 ms 
following large S2 signals

oOnly 0.8% hit on live-time 
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Fiducial Cut: radius < 18 cm, 38<drift time<305 µs, 118.3+-6.5 kg fiducial 
oLow energy alpha-parent nuclear recoil events generate small S2+S1 events. The radius 
and drift time cuts were set using population of events which had S1’s outside of the 
WIMP signal search range, but with S2’s of a comparable size to lower S1 events in same 
population. This ensured that position reconstruction for sets were similar, and definition 
of fiducial was not biased.

oCuts also remove corner regions where ER event rates are proportionally very high.
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Fiducial
Volume

18 cm radius

40.3 cm
height

Total mass in the fiducial volume 118 kg
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S2b > 200 phe: 
removes SE and small 
edge events

160 events observed
1.9 events/day
ER Calibration 99.6±0.1% leakage below NR mean, 
so expect 0.64 +/- 0.16 for 160 events
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Setting the Limit – PRL

•Use of Profile Likelihood Ratio (PLR) 
oWe don’t have to draw acceptance boxes avoiding potential bias in data analysis from 
selecting regions in S1,S2 signal-space.

•Generate pseudo-experiments for σtest, compare the value of test 
statistic in data with the value of qσ,i from each pseudo-experiment and 
from that get the p-value.

40

Value of maximum likelihood

Fixed point to test 

Nuisance parameters, 
not fixed

qσ ≡ −2 log




L
�
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LWS ∝
N�

i=1

�
NsPs(x;σ,θs) +NComptPER(x;θCompt)

+NXe−127PER(x;θXe−127) +NRn−122PER(x;θRn)
�

Setting the Limit – the Likelihood 41

Observables: x = (S1, log10(S2/S1), r, z)

Parameter of interest: Ns

Nuisance parameters: NCompt, NXe-127, NRn/Kr-85

Energy
Discriminant between ER/NR

Discriminants against 
external/internal radiation

39Gaussian constrain to within 30% of the predicted rates
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Ps(ENR(S1)) = ε(S1)
dR

dENR
(σWIMP ,mWIMP ,θs)

dENR

dS1

Modeling The Signal 42

8 GeV /c2 WIMP 100 GeV /c2 WIMP 2 TeV /c2 WIMP

Ps(x;σ,θs) = PNR(log10 (S2/S1) |S1)Ps(ENR(S1))Ps(r)Ps(z)

Ps is uniform in r2 and z

contains the WIMP recoil energy spectrum

WIMP spectrum (we used the standard!)

from the nuclear band parametrization
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•For 8.6 GeV WIMP at 2.0×10-41 cm2, CDMS 
II Si (2012) 90% CL:

oexpect 1550 WIMPs in LUX search

43Setting the Limit – The Signal
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Note how WIMP distribution appear 
below the calibration NR mean ...

... the shift occurs because for a given S2 value 
the S1 is more likely to have up-fluctuated in 
order to appear above threshold

•For a 1000 GeV WIMP and cross section at the 
existing XENON100 90% CL Sensitivity 1.9x10-44 cm2

oexpect 9 WIMPs in LUX search
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10-90% Nuclear Recoil Band 

Probability Density Function (PDF) 
for WIMP Signal

PDF assumes Standard Milky Way Halo parameters as described in Savage, Freese, Gondolo 
(2006) v0=220 km/s, vescape = 544 km/s, ρ0 = 0.3 GeV/c2, vearth = 245 km/s.
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Fit Projections 44

Only background

100 GeV WIMP Signal
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Profile-Likelihood Analysis shows a p-value 
of 35% consistent with ER background and 
no WIMP signal
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46Spin-independent sensitivity plots
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47

>20x more sensitivity

CDMS II Si Favored

CoGeNT Favored

LUX (2013)-85 live days
LUX +/-1σ expected sensitivity

XENON100(2012)-225 live days

CRESST Favored

CDMS II Ge

x

DAMA/LIBRA Favored

Low-mass WIMPs fully excluded
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Monday, March 24, 2014



DD Calibrations
(LUX Preliminary Results)
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Deuterium-Deuterium 
Beam Calibrations

•Neutron generator/beam pipe assembly aligned 15.5 cm below liquid 
level in LUX active region to maximize usable single / double scatters

oBeam Energy 2.5 MeV (elastic scattering dominant)
oBeam leveled to ~1 degree
o105.5 live hours of neutron tube data used for analysis 
o Complete Geant4 LUXSim + NEST simulation of D-D neutron calibration 
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Accepted Dark Matter Result arXiv:1310.8214v2 
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Deuterium-Deuterium 
Double-scattering events

51
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Deuterium-Deuterium 
Ionization Yield

52

Blue Crosses - LUX Measured Qy; 181 V/cm (absolute energy scale)
Green Crosses - Manzur 2010; 1 kV/cm (absolute energy scale)
Purple Band - Z3 Horn Combined FSR/SSR; 3.6 kV/cm (energy scale from 
best fit MC)

Orange Lines - Sorensen IDM 2010; 0.73 kV/cm (energy scale from best fit  
MC)

Black Dashed Line - Szydagis et al. (NEST) Predicted Ionization Yield at 
181 V/cm

LUX
PRL threshold

Analysis cut-off 
0.7 keVnra

Flat Sys. Error on 
Blue Points
(1-sigma)

• Reconstruct number of electrons at 
interaction site by matching ionization signal 
model with observed event distribution using 
binned maximum-likelihood

• Systematics associated with threshold 
correction discussed in extra slides

• Systematic error of 7% from threshold 
correction for (lowest energy) 0.7-1.0 keVnra 
bin

• Red systematic error bar shows common 
scaling factor uncertainty. Dominated by 
uncertainty in electron extraction efficiency.
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Deuterium-Deuterium 
Scintillation Yield

•Use single scatters with suitable 
selection criteria

•NEST based MC used to simulate 
expected single scatter energy 
spectrum with LUX threshold, purity, 
electron extraction, energy resolution 
effects applied

•First bin conservatively begins at 50 
phe S2bc to avoid spurious single 
electron coincidence

•LUX Leff values currently reported at 
181 V/cm as opposed to the traditional 
zero field value.

•Energy scale defined using LUX 
measured Qy

•X error bars representative of error      
on mean of population in bin

53

Blue Crosses - LUX Measured Leff; reported at 181 V/cm (absolute energy 
scale)
Green Crosses - Manzur 2010; 0 V/cm (absolute energy scale)
Purple Band - Horn Combined Zeplin III FSR/SSR; 3.6 kV/cm, rescaled to 0 V/
cm (energy scale from best fit MC)
Orange Crosses - Plante 2011; 0 V/cm (absolute energy scale)
Black Dashed Line - Szydagis et al. (NEST) Predicted Scintillation Yield at 181 
V/cm

LUX
PRL threshold
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Future Plans
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LUX 300 day run

•300 day run planned for 2014/2015
oStill not background limited and expect factor of ∼5 improvement in sensitivity → 
discovery possible

oPotential for improvements to E fields/calibrations /reconstruction 
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LUX (2013)-85 live days

LUX (2013)-300 live days
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Longer term: LUX-ZEPLIN (LZ)

•20 times LUX Xenon mass, active scintillator veto, Xe purity at sub ppt level
•Ultimate direct detection experiment - approaches coherent neutrino scattering 
backgrounds

•Proposal for US down-select process end of Nov., decision expected Jan 2014 
•If approved will be deployed Davis lab 2016+ 

56

T. Shutt - LZ, Oct 30, 2013 9

LZ

Same water tank as LUX

T. Shutt - LZ, Oct 30, 2013

LZ sensitivity

15

LUX Today

LZ - 3 yearsx 1000

LUX
2015

atmospheric neutrino signal6 years

LZ approaches the final neutrino background

LZ 3 years
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Historical Progress in the Limits 57

LUX (2013)
LUX (final)

LZ
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CONCLUSIONS

•LUX has made a WIMP Search run of 86 live-days and released the analysis 
within 9 months of first cooling in Davis Lab

oBackgrounds as expected, inner fiducial ER rate <2 events/day in region of interest
oMajor advances in calibration techniques including 83mKr and Tritiated-CH4 injected 
directly into Xe target

oVery low energy threshold achieved 3 keVnr with no ambiguous/leakage events
oER rejection shown to be 99.6+/-0.1% in energy range of interest

•Intermediate and High Mass WIMPs
oExtended sensitivity over existing experiments by x3 at 35 GeV and x2 at 1000 GeV   

•Low Mass WIMP Favored Hypotheses ruled out
oLUX WIMP Sensitivity 20x better
oLUX does not observe 6-10 GeV WIMPs favored by earlier experiments

•Neutron DD Calibrations
•Results published in 

oLUX Main Results PRL 112, 091303 (2014)
oRadiogenic and Muon-Induced Backgrounds in the LUX (arXiv 1403.1299)
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