

Baryon Acoustic Oscillations at 21 cm

Réza Ansari (Université Paris Sud & LAL (Orsay)

LPNHE - Paris

April 2014

BAO's (Baryon Acoustic Oscillations)

- * BAO as a Dark Energy probe
- * Optical surveys, recent results
- ***** BAO's at 21 cm
 - * 3D mapping of 21 cm emission
- # BAORadio, CHIME, BINGO, Tianlai
- # HI-Cluster program at Nançay

BAO's

Cosmological probes and Dark energy

- * Baryon Acoustic Oscillations (**BAO**) : Measurement of characteristic scales → dA(z), H(z)
- * Supernovae (**SN**): Measure of apparent SNIa luminosity as a function of $\rightarrow dL(z)$
- * Weak lensing (WL) : Measure of preferred orientation of galaxies → dA(z), growth of inhomogeneities (structures / LSS)
- * Galaxy Clusters (CL) : number count and distribution of clusters → dA(z), H(z), Structure formation (LSS)
- Integrated Sachs Wolf (ISW) effect : effect of evolving gravitational potential in large scale structures (with redshift)

BAO: Baryon Acoustic Oscillations

- Imprints left by the baryon-photon plasma oscillations prior to decoupling, on dark matter and visible matter (galaxies ...) during structure formation after decoupling
- Wiggles in the distribution of matter, dominated by dark matter (and also visible matter / galaxies) : A preferential length scale (~ 150 Mpc) in the matter clustering
- Standard ruler type cosmological probe with a measurement @ z ~ 1100 (CMB anisotropies)

Planck TT power spectrum, Planck collaboration arXiv 1303.5075

8. Constraints on the basic six-parameter ACDM model using *Planck* data. The top section contains constraints on the six y parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

	Planck		Planck+WP	
Parameter	Best fit	Best fit 68% limits		68% limits
$\Omega_{\rm b}h^2$	0.022068	0.02207 ± 0.00033	0.022032	0.02205 ± 0.00028
$\Omega_{ m c}h^2$	0.12029	0.1196 ± 0.0031	0.12038	0.1199 ± 0.0027
$100\theta_{\rm MC}$	1.04122	1.04132 ± 0.00068	1.04119	1.04131 ± 0.00063
τ	0.0925	0.097 ± 0.038	0.0925	$0.089^{+0.012}_{-0.014}$
$n_{\rm s}$	0.9624	0.9616 ± 0.0094	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_s)$	3.098	3.103 ± 0.072	3.0980	$3.089^{+0.024}_{-0.027}$
Ω_{Λ}	0.6825	0.686 ± 0.020	0.6817	$0.685^{+0.018}_{-0.016}$
Ω_{m}	0.3175	0.314 ± 0.020	0.3183	$0.315^{+0.016}_{-0.018}$
$\sigma_8 \ldots \ldots$	0.8344	0.834 ± 0.027	0.8347	0.829 ± 0.012
$Z_{\rm re}$	11.35	$11.4^{+4.0}_{-2.8}$	11.37	11.1 ± 1.1
H_0	67.11	67.4 ± 1.4	67.04	67.3 ± 1.2
$10^{9}A_{s}$	2.215	2.23 ± 0.16	2.215	$2.196^{+0.051}_{-0.060}$
$\Omega_{\rm m}h^2\ldots\ldots\ldots$	0.14300	0.1423 ± 0.0029	0.14305	0.1426 ± 0.0025
Age/Gyr	13.819	13.813 ± 0.058	13.8242	13.817 ± 0.048
Z* •••••	1090.43	1090.37 ± 0.65	1090.48	1090.43 ± 0.54
$100\theta_*$	1.04139	1.04148 ± 0.00066	1.04136	1.04147 ± 0.00062
Zeq	3402	3386 ± 69	3403	3391 ± 60

Planck cosmological parameters, Planck collaboration arXiv 1303.5075

Matter clustering and Acoustic Oscillations

Animation : D. Eisenstein

BAO complementarity with other geometric probes

- Different systematics
- Different degeneracy respect to cosmological parameters

Bias and systematic effects

- Exotic effects changing acoustic horizon
- P(k) & the non linear regime (distortion/shift of the correlation peak)
- Bias : tracers (galaxies) / dark matter, evolution of galaxies ...
- redshift space distortions
- Selection bias / survey geometry
- * Other observational biases (photo-z ...)
- * Foregrounds in radio : synchrotron, radio sources ...

Statistical uncertainties on P(k) estimates

- Intrinsic statistical error, determined by the number of observed Fourier modes (cosmic / sample variance)
- Shot (Poisson) noise due to the sampling of the underlying density fields by the observed galaxies

$$\sigma_P = \sqrt{\frac{4\pi^2}{k^2 \delta k V_{\text{surv}}}} \left[P_{\text{LSS}} + P_{\text{noise}} \right]$$
$$P_{\text{shot-noise}} = \frac{1}{m} n_{\text{gal}} : \text{Galaxy density}$$

- * Noise (system temperature) in radio imaging (intensity mapping) mode
- Radio foregrounds : component separation increases the P(k) estimate statistical uncertainties

Some recent results ...

BAO - WiggleZ,6dF, SDSS Blake et al, arXiv:1108.2635

WiggleZ Survey: BAOs in redshift slices 17

z ~ 0.57 (BOSS) m z ~ 0.5 ... 3 in future surveys

k (h Mpc⁻¹) SDSS-III BOSS DR9/10/11 galaxy power spectrum & correlation function Anderson et al, arXiv 1312.4877

Figure 24. The $D_V(z)/r_d$ measured from galaxy surveys, divided by the best-fit flat Λ CDM prediction from the Planck data. All error bars are 1 σ . We now vary the cosmological model for the Planck prediction. Red shows the prediction assuming a flat Universe with w = -0.7; blue shows the prediction assuming a closed Universe with $\Omega_K = -0.01$ and a cosmological constant.

↑ SDSS-III BOSS ↑ Anderson et al, arXiv 1312.4877

Planck (Cosmo. Param) ↓ arXiv 1303.5076 ↓

Fig. 36. 2D marginalized posterior distributions for w_0 and w_a , for the data combinations *Planck*+WP+BAO (grey), *Planck*+WP+Union2.1 (red) and *Planck*+WP+SNLS (blue). The contours are 68% and 95%, and dashed grey lines show the cosmological constant solution.

Slide borrowed from A. Stebbins

Cosmology & BAO at 21 cm

BAO in radio

- As in optical surveys :
 - Identification of HI (21 cm) emission sources, determination of the angular position and redshift - Computation of the two point correlation function or the P(k) spectrum, using the catalogue of identified objets.
- Or similar to CMB observations :
 - \equiv 3D mapping of the HI (21 cm) emission T21(α , δ ,z) Radio foreground subtraction, determination of the power spectrum P(k,z) on the 21 cm sky temperature data cubes.

LSS / BAO in radio with galaxies $S_{21}^{Jy} \simeq 0.021 \, 10^{-6} \, \text{Jy} \, \frac{M_{H_I}}{M_{\odot}} \times \left(\frac{1 \, \text{Mpc}}{D_L}\right)^2 \times \frac{200 \, \text{km/s}}{\sigma_v} \, (1+z)$ $S_{lim} = \frac{2 \, k \, T_{sys}}{A \, \sqrt{2t_{integ} \Delta \nu}}$

 S_{lim} en μ Jy pour $t_{integ} = 86400 \text{ s}, \Delta \nu = 1 \text{ MHz}$

 S_{21} en μ Jy pour $M_{H_I} = 10^{10} M_{\odot}$

R.Ansari - Sep 2011

A (m^2)	Tsys (K)	Slim	Z	S21 (μJy)
5000	50	66	0.25	175
5000	25	33	0.50	40
5000	20	55	1.0	9.6
100000 <	50	3.5	1.5	3.5
100000	25	1.7	2.0	2.5

> 100 000 m² \rightarrow Need SKA!

R.Ansari - June 2012

21 cm cosmological observations A comparison with optical observations

- * 21 cm line is ± is the only spectral feature around 1 GHz ⇒ spectro-photometric observations
- * Band: ~ 100 MHz ... 1500 MHz -v = f(z), z: 0 ... 101420 MHz @ z=0, 946 MHz @ z=0.5, 720 @ z=1, 284 @ z=5, 129 @ z=10
- * Diffraction limited, source confusion:
 700 MHz: D=100 m → ~20', D=1km → ~2', D=100 km → ~1", 2' → 1 Mpc @ z = 1
- Intensity measurement in optical, amplitude & phase in radio;
 CCD in optics, but interferometry and spectroscopy in radio
- instrumental noise (read-out noise <5 e) often négligeable in optical, dominant in radio (Tsys~20-50 K)
- low ambient/parasitic light level in optical in good observatories;
 radio band polluted (RFI) by terrestrial emissions

Intensity mapping & dark energy surveys

BAO with 21 cm intensity mapping $T21(\alpha,\delta,z)$

- 3D mapping of neutral hydrogen distribution through total 21 cm radio emission (no source detection)
- Needs only a modest angular resolution 10-15 arcmin
- Needs a large instantaneous field of view (FOV) and bandwidth (BW)
- \equiv Instrument noise (Tsys)
- \equiv Foregrounds / radio sources and component separation
 - Peterson, Bandura & Pen (2006)
 - Chang et al. (2008) arXiv:0709.3672
 - Ansari et al (2008) arXiv:0807.3614
 - Wyithe, Loeb & Geil (2008) arXiv:0709.2955
 - Peterson et al (2009) arXiv:0902.3091
 - Ansari et al (2012) arXiv:1108.1474

Foregrounds Signal HI : T₂₁ < mK !

http://ambda.gsfc.nasa.gov/

Thursday, April 24, 14

R.Ansari

Radio foreground (GSM) @ 720 MHz (z=1.) - Kelvin

X

21 cm sky brightness @ 720 MHz (z=1.) - milliKelvin

mK sensitivity with Tsys $\sim 50\text{-}75~\mathrm{K}$

- * Large integration time $(10^4 10^5 s) \rightarrow \propto 1/\sqrt{(t_int \Delta v)}$
- * Instrument (Tsys, beam ...) stability
- multi beam large FOV radio telescope
- interferometer or FPA/multi feed receivers with single dish

P(k)@21cm - PNoise(k) PNoise(k) @ z=1

P21(k) mK^2 x (Mpc / h)^3

Foreground removal

- Exploit frequency smoothness and power law ($\propto \nu^{\beta}$) behavior of foregrounds (synchrotron/radio sources)
- power law / polynomial / foreground model fit & subtraction
- Mode mixing, bias, error propagation ...

Signal-to-Noise Eigenmodes

Measurement v is a combination of the sky a and noise n

$$\mathbf{v} = \mathbf{B}\mathbf{a} + \mathbf{n} \tag{1}$$

Construct the covariances of the signal and foregrounds

$$\mathbf{S} = \mathbf{B} \left\langle \mathbf{a}_s \mathbf{a}_s^{\dagger} \right\rangle \mathbf{B}^{\dagger}, \qquad \mathbf{F} = \mathbf{B} \left\langle \mathbf{a}_f \mathbf{a}_f^{\dagger} \right\rangle \mathbf{B}^{\dagger}$$
(2)

Jointly diagonalise both matrices (eigenvalue problem)

Karhunen-Loève (KL) Transform:

 $Sx = \lambda Fx$

Gives a new basis, where we expect that all modes are uncorrelated. Eigenvalue λ_i gives ratio of signal to foreground variance for mode *i*.

cf. Bond 1994, Vogeley and Szalay 1996

Richard Shaw, Ue-Li Pen Kris Sigurdson et al. ApJ 2014, arXiv 1302.0327

Slide by **Kris Sigurdson** UBC

₍₃₎Signal/Foreground Spectrum

Component separation 21cm LSS signal extraction @ z=0.6

0.74

0

-0.76

-1.5

0.2

0.099

0

-0.1

-0.2

LSS-Map*Lobe(25 arcmin) @ 884 MHz

Original simulated 21cm signal

Recovered 21cm signal, in presence of continuum radio signals, and instrument response

Ansari et al. 2012, A&A Dec 2011, arXiv:1108. ExtractedLSS Map @ 884 MHz (GSM)

21 cm Cosmology / DE

- Mapping cosmic matter distribution using neutral hydrogen as tracer
- Measure the HI density fluctuations and its power spectrum P21(k)
- Determine BAO scale kBAO pour 0.5
 < z < 2-3
- Measure the HI gas fraction as a function of redshift, scale and environment
- Mapping of the radio foregrounds in the 500-1000 MHz band

BAQRadio

LAL - IN2P3/CNRS

R. Ansari J.E. Campagne M. Moniez A.S. Torrento D. Breton C. Beigbeder

T. Cacaceres D. Charlet B. Mansoux C. Pailler M. Taurigna IRFU - CEA

C. Magneville C. Yèche J. Rich J.M. Legoff P. Abbon *E. Delagnes* H. Deschamps C. Flouzat *P. Kestener*

Observatoire de Paris

27 cm

P. Colom J.M. Martin J. Borsenberger J. Pezzani F. Rigaud S. Torchinsky C. Viou

34

- In France, BAORadio project started in 2007
 LAL (IN2P3/CNRS), Irfu (CEA), Observatoire de Paris
 Development of the BAORadio analog & digital electronic system
- Focal plane array prototype FAN
 - Electronic tests at Nançay, using the large radio telescope_
 - Test using the CRT prototype at Pittsburgh
 - PAON test interferometer with small
 - Financial support: IRFU, CNRS/P&U, P2I, Obs. de Parius, LAL, PNCG

BAORadio (french 21cm intensity mapping effort)

- Electronic, acquisition & processing software development
- * FAN (J.M.Martin, P. Colom)
- * Observations with CRT at Pittsburgh, calibration and beam synthesis
- * HI-Cluster wide band observation program with NRT OptX21 wide band observations with NRT : BAORadio & WIBAR
- PAON test interferometer at Nançay
- * NEBuLA wide band digitizer (C. Viou, D. Charlet)

Pittsburgh, Novembre 2009

MUUU

Thursday, April 24, 14

a consta

CasA24 - Pittsburgh/Nov 2009

Test interferometer for an array of small dishes (RAID concept) PAON-2 : 2 × D=3 m dishes (sep 2012 - sep 2013) PAON-4 : 4 × D=5 m dishes, construction phase deployment : nov 2013 - march 2014

PAON Paraboles A l'Observatoire de Nançay

PAON Test Interferometer (J.M.Martin, J.E. Campagne)

PAON-4

(F. Rigaud) installation Nov 2013 -March 2014 4 D=5m dishes

PAON-2 → installed September 2012

Other 21 cm BAO projects

Battye, Browne, Dickinson, Heron, Maffei, Pourtsidou 2013 MNRAS, 434, 1239 [arXiv:1209.0343]

BINGO: A novel experiment for HI intensity mapping at z=0.1-0.5

(update since Moriond 2012)

Clive Dickinson

Jodrell Bank Centre for Astrophysics, The University of Manch

Recontres de Moriond, Cosmology 2014, March 22-29, 2014, La Thuille, Italy

Only major challenge: BINGO horns are big!

=1 /", 0 ample: =4 /m org

CHOIL a' Browne

Standard technique, expensive and heavy alternatives being investigated 1 loain covered in metal tape (Manchester) - potentially 1/1011 of cost 2 Bend corrugated Alumin um hoop, and fix together (NPF)

Canadian Hydrogen Intensity Mapping Experiment (CHIME)

Kevin Bandura CHIME Collaboration

Slide by K. Bandura

The CHIME Pathfinder

Slide by K. Bandura

CHIME Fact Sheet

Full CHIME Layout

Structure	5 cylin	iders, 100m x 20m each			
Bandwidth		400-800 MHz	Digitize 8bits at 800 MSPS		
Number Feeds/cylinder	256 du (2	al pol feeds per cylinder 560 digitizers total)	~31cm spacing		
Frequency Channels	512 frequency of	channels, 781 kHz wide (1.28 µs)	(for cosmology, you can channelize further!)		
Data Rate	2N _{FEEDS}	s x 3.2 Gbit/s = 8 TeraBit/s	(assumes 4bit truncation)		
Observing Frequency	400 MHz to	8oo MHz			
Wavelength	75 cm	37 cm			
21cm Redshift	z=2.5 (11 Gyr ago)	z=0.8 (7 Gyr ago)			
Beam Size	0.52 ⁰	0.26°			
E-W FoV	2.5°	1.3°	C1: 1 - 1		
N-S FoV		-45° tO +135° (max possible) 0° tO +90° (more likely)	K. Bandura		
Time/pixel/day	10min, 14min, 24h equator, 45deg, ncp	rs 5min, 7min, 24hrs equator, 45deg, ncp			
Receiver Noise Temperature Flux Conversion Daily Sensitivity Final Survey	(Appro	50k ~2K / Jy ~50 μJy / pixel ~1.5 μJy/pixel pximate – for planning purposes only)			
correlator by spring 2014					

TIANLAI

NATIONAL ASTRONOMICAL OBSERVATORIES , CHINESE ACADEMY OF SCIENCES

From CRT / BAORadio to... Tianlai

Toward a large instrument for 21 cm DE survey

- Tianlai project led by NAOC (China) -Prof. Xuelei Chen
- TDA (Tianlai Dish Array) and PC-GPU correlator (US, P. Timbie, J. Peterson)
- PAON demonstrator

Tianlai site : Hongliuxia (Xinjiang, western China) 44.15 N , 91.8 E

1 - Xingjiang - Hongliuxia
 2 Xingjiang - Dashankou
 3 4 Inner Mongolia , Baichi

Tianlai correlator & ADC boards

Development plan for the Tianlai 21 cm DE survey

- * 2014-2015 : TDA (Tianlai Dish Array) , 16 D=6m dish array
- 2015 : CRT type instrument (3 Cylinder array)
- * 2015 : Stage 1 engineering array, 32 feeds
 - * Aim : detect optical × 21cm cross correlation at z ~ 0.7-1
- * 2016 : Stage 2 first science array, ~ 200 feeds (2016-2018)
 - * Aim: detect BAO with 21 cm signal at z ~ 0.7 1.0
- * 2020 ? : Stage 3 DE survey, ≥ 1000 feeds
 - * Aim: measure BAO with 21 cm signal in the redshift range 0.5...2.0

HICluster program at Nançay

Paper being finalized, will be submitted soon for publication ...

- * Observation of some nearby clusters (z ~ 0.1)
- Observation in parallel with the NRT auto-correlator
 & BAORadio electronic chain at Nançay
- * Total of ~ 10 hours / target distributed over a year
- Calibration, RFI cleaning, sensitivity estimates
- * Reach mK level over a wide band
- OptX21 program started, using the BAORadio electronic and WIBAR system in parallel

Résolution 3-20 arcmin

	Table B.1 Comparison of major blind HI surveys										
		Survey	Area	Beam	V _{max}	V _{res} ^a	ts	rms ^b	N _{det}	min M _{HI} ^c	Ref
dex.php	2		(deg ²)	(arcmin)	(km/s)	(km/s)	(s)	(mJy)		(M _{sun})	
	AHISS	65	3.3	-700 - 7400	16	var	0.7	65	1.9x10 ⁶	1	
	ADBS	430	3.3	-650 - 7980	34	12	3.6	265	9.9x10 ⁶	2	
Š	3	WSRT	1800	49.	-1000 - 6500	17	60	18	155	4.9x10 ⁷	3
	5	Nancay CVn	800	4 x 20	-350 - 2350	10	80	7.5	33	2.0x10 ⁷	4
Voir : http://egg.astro.cornell	HIJASS	1115	12.	-1000 - 10000 ^d	18	400	13	222	3.6x10 ⁷	5	
	HIJASS-VIR	32	12.	500 - 2500	18	3500	4.	31	1.1x10 ⁷	6	
	HIDEEP	60	15.5	-1280 - 12700	18	9000	3.2	173	8.8x10 ⁶	7	
	2	HIZSS	1840	15.5	-1280 - 12700	27	200	15.	110	4.1x10 ⁷	8
	HICAT	21341	15.5	300 - 12700	18	450	13.	4315	3.6x10 ⁷	9	
	HIPASS		15.5	300 - 12700	18	450	13.	(6000)	3.6x10 ⁷	10	
	AUDS	0.4	3.5	-960 - 47000°	TBD	70 × 3600	0.02	(40)	0.6x10 ⁶	11	
	AGES	TBD	3.5	-960 - 47000°	TBD	300	0.5	TBD	1.4x10 ⁶	12	
Are	Arecibo	ALFALFA	7000	3.5	-2000 - 18000	11	28	1.6	(16000)	4.4x10 ⁶	

 $z_{max} \sim 0.03 \dots 0.15$ $\delta z \sim 0.0001$

z <~ 0.06

Comparison of few 21 cm surveys

Sensibilité ~ mJy

Arecibo

AND DESCRIPTION OF

Ø 305 m S ~ 73 000 m^2 50 MHz ... 10 GHz

http://www.naic.edu

+LOFAR station +CODALEMA

D944

Le Moulin Brole

Rue de Salt

Radiohéliographe

NRT

Bourdaloue

Nançay (village)

Route de So

A)

Nançay

La Talle aux Crevel

Les Varenne

Le

Le Grand

Bois) Chevaux

Étang Communal de la Chaux

Camping des Pins

ite de Salbris

Maine m

Thursday, April 24, 14

2000 ft

e Boulay

D944

Transit telescope Plane mirror 200mx40m Spherical mirror 300mx35m S ~ 7000 m^2 Three bands: 1400,1660,3330 MHz

Nancay radio telescope

HI-CLIUSTER @ NANÇAY

- % NRT : ~ 7000 m^2 collecting area
- * plane mirror, delta pointing
- Cryogenic receiver, Tsys ~ 25-30 K, LF (21 cm band) 1.1-1.8 GHz HF (9 cm) 1.7-3.5 GHz
- ℬ Beam (@ 21 cm) : 4' (RA) x 22' (DEC)
- SAORadio for HI-Cluster: 1250-1500 MHz, 30 kHz freq. resolution,

Spectrum at Nançay (Measured with WIBAR)

Slide by A.S. Torrento

AmasH₁@Nançay observations

Source	RA	Dec	Z	v _{obs} (MHz)	Observation period SOU	MAP	
Abell 85	00 ^h 43 ^m 16.99 ^s	-9°09'46 <u>.99</u> "	0.05	1346.3	April – June 1125.147 2011 $\binom{8 \text{ h}}{(\text{gals})}$	239.147	
Abell	11h15m08 37s	2°33'01 39"	0.078	1320.8	March 2011 – 1124.147	241 147	
1205	11 15 00.57	2 35 01.22	0.070	1520.0	January 2012 (gals)	211.117	
Abell	22h24m33 30s	0°53'18 50"	0.095	1302.4	March – June 1123.147	244 147	
2440	22 24 33.30	0 55 10.55	0.075	1302.4	2011 (3.5 h) (center)	277,177	
3C161	06h24m43.09s	-5°51'14 <u>.00</u> "		1420.4	9 th Dec 2011 (6 m) ^{84.170}	584.171	

Useful integration time (On/Off ...)

- I TB of data (waveform) / observation hour
- 100 TB total data set (processed at CC-IN2P3)

BAORadio / HI-Cluster

Intermittent RFI cleaning using fine time sampling ...

Sensitivity (radiometer) curve HI-Cluster program, BAORadio & NRT correlator

abell1205 (ON-OFF)/OFF [13203,13213]MHz bank1,Ch0 (turq,blue) bank2,Ch1 (violet,red)

HI-Cluster : Sensitivity expressed as Tsys ... Comparison between BAORadio electronic & Acquisition system and standard NRT auto-correlator

Analysis by A.S. Torrento - 2013

HI cluster: oscillations

- 5-MHz
 - present in BAORadio only
 - due to impedance mismatch
- 500-kHz
 - present in NançayCorr and BAORadio
 - due to noise reflexion between spherical mirror and chariot
 - (*d* ~ 290 m).
- Normalisation per cycle by OFF spectrum and (ON-OFF)/OFF arithmetic cancels most of them.

67

A85 Spectre du sigma (écarttype) en mJy

Fig. 2

A85 signal : ~ 4 mJy.MHz

A1205, zoom over A85 frequency range

ESTIMATION DU SIGNAL ATTENDU (2)

	f (MHz)	Z	dL (Mpc)	P21* (mJy.MHz)
A85	1353	0.0498	228	3.86
A1205	1318	0.777	363	1.52
A2440	1300	0.926	438	1.0

P21* Puissance (en mJy.MHz) au sol pour MHI = 10^10 Msol

HI-CLUSTER SUMMARY

- # HI-Cluster program: ~ 1mK noise level has been reached with t_int ~ 10 hours, over a wide band (~1280 - 1450 MHz), using the BAORadio system
- BAORadio Sensitivity about a factor 2 better than the standard NRT correlator, while keeping a much larger fraction of the data (fine time sampling)
- * A85: HI detected A1205: marginal detection or upper limit (publication being finalized)
- Should be careful about spectral structure due to standing waves in cables, feed-reflector ...
- OptX21:21cm optical correlation at z=0.2 pilot observations started in fall 2013 (BAORadio ,WIBAR)
Outlook

- Exciting scientific perspectives (DE, HI mass distribution at z ~ 1.5 ...) for intensity mapping surveys
- CHIME, Tianlai can serve as testbeds to develop intensity mapping and open the way for larger instruments (SKAmid, Aperture Arrays)
- Scientific challenge : data processing, 3D map making & foreground subtraction