

Physics at the LHC and future outlook

Dimitris Varouchas (LPNHE)

FRIF retreat meeting, 24 January 2014

Higgs boson discovery

• Summer 2012: Historic observation of Higgs boson particle with a mass of m_H~125.5 GeV from ATLAS and CMS

• Autumn 2013: The Nobel Prize in Physics 2013

Photo: A. Mahmoud **François Englert**

Photo: A. Mahmouc Peter W. Higgs

Outline

- Higgs boson physics
 - Decay channels
 - Mass measurement
 - Spin CP properties
 - Status of rare decays searches

Outline

• LHC

- ATLAS / CMS detectors
- A few SM (non-Higgs) results
- Higgs boson physics
 - Decay channels
 - Mass measurement
 - Spin CP properties
 - Status of rare decays searches
- SUSY
- Exotics
- ATLAS/CMS potential in the future LHC runs

LHC

LHC is a (mainly) pp collider of 27 km long in a tunnel ~ 100 m underground close to Geneva (tunnel already used by LEP) which should work with a *design* centre-of-mass energy of 14 TeV Although, 2011: 7TeV

2012: 8TeV

LHC and Luminosity

The price of high Luminosity: Pileup

ATLAS - CMS

• Designed for Higgs boson discovery and New Physics searches

Excellent vertex and tracking system

Our best handle against pileup

- Excellent calorimetry with extended coverage to enable accurate jet and missing energy measurements
- Large coverage of muon detection

I will mainly focus on ATLAS results 8

Why still look for SM?

- Do the experiments perform as designed?
- Is known physics correctly observed?
- Then look for new physics
- We can claim signals of new physics after having made measurements of already known physics that are consistent with the precise predictions of the Standard Model
- Make sure we understand what we measure

Standard Model: Inclusive cross-sections

- In general, make **measurements** fully **corrected to fiducial acceptances**, which can be easily **reproduced in MC generators**, extrapolate to total cross-sections
- More **complex topologies** are important **backgrounds** for **Higgs** and **BSM** searches
- Beyond inclusive cross-sections: plenty of high precision measurements -can only flash a few examples here-

Standard Model: Dijets

- Dijet differential cross-section as a function of m_{jj}
- Superb **QCD agreement**
- Precision high enough, to test different PDF's
- All necessary info is public: People can easily test their models
 11

Top quark physics

- Excellent description by NNLO+NNLL
- Top quark measurements are **systematics-limited**. Ongoing efforts on reducing systematic uncertainties

Top quark physics

mass of the top

• ATLAS-CMS combination of 2011 results, for m_{top}

- Uncertainty of 0.95 GeV comparable to Tevatron measurement
 - Dominated by systematic uncertainties due to jet calibration
- ✤ 2012 updates are on going: m_{top} higher precision to be reached soon

"I think we have it!!"

July 4 2012, "Discovery!"

CERN DG, Rolf Heuer on the 4th of July 2012

Higgs phenomenology @ LHC

LHC Higgs Xsec WG: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections (arXiv:1307.1347) 0000000 g Total Uncert 10^{2} WW H⁰ $[dd] (X+H \leftarrow dd)_c$ √s= 8 TeV bb $PD \rightarrow H (NNLO+NNLL QCD + NLO EW)$ 000000 qqF: 0 = 19.2 pb10 BR \overline{C} I⇒ qqH (NNLO QCD + NLO EW) -s6610⁻² Z/W WH (NNLO QCD + NLO EW) Zγ QCD +NLO EW) ttH (NLO QC[VBF: 0 = 1.6 pb10⁻¹ 10^{-3} 10⁻² 10⁻⁴ 100 120 100 120 140 160 180 200 140 160 180 200 M_H [GeV] M_н [GeV] Br(H—>WW): 22% Br(H—>bb): 57% WH: 0=0.7 pb Br(H—>**TT**): 6.2% Br(H—>ZZ): 2.8% ZH:0=0.4 pb Br(H—>**YY**): 0.23%

- Measure all possible combinations of production modes and decay channels
 - Nature is being kind, giving us a Higgs boson with a m_H~125 GeV, perfect mass point to measure all measurable decay channels

Higgs to bosons

Higgs to bosons

- We fit the Background + $\mu \times Signal$ model to the data
 - μ : the parameter of interest, signal strength: $\mu = \frac{\sigma_{measured}}{\sigma_{SM}}$
 - + The value $\mu=0$ ($\mu=1$) corresponds to the **absence** (presence)
 - of a Higgs boson signal with the SM production cross section.

μ	ATLAS	CMS
Η—>γγ	1.5 ± 0.3	0.8 ± 0.3
H—>ZZ*	1.4 ± 0.4	0.9 ± 0.3
H—>WW*	1.0 ± 0.3	0.7 ± 0.2
Combined	1.3 ± 0.2	0.8 ± 0.2

Consistent with SM Higgs boson predictions !

ATLAS combined mass measurement

ATLAS-CONF-2013-014

mH^{YY} = 126.8 ± 0.2 (stat.) ± 0.7 (sys) GeV

mH^{4|} = 124.3 ± 0.6 (stat.) ± 0.5 (sys.)

Combined mass measurement

- Mass difference, m_{YY} m₄₁:
 - Test the assumption that both come from a common mass, parameter of interest
 Δm_H = m_{YY} - m_{4l}
 - $\Delta m_H = 2.3 \pm 0.7$ (stat) ± 0.6 (sys) GeV
 - Consistency of $\Delta m_H = 0$:
 - * **2.4** σ away from $\Delta m_H = 0$ (p-value=**1.5%**)

CMS combined mass measurement

mH^{YY} = 125.4 ± 0.5 (stat.) ± 0.6 (syst.) GeV

CMS-PAS-HIG-13-005.

mH^{4|} = 125.8 ± 0.5 (stat.) ± 0.2 (syst.) GeV

- CMS Combined mass measurement

• ATLAS: $m_H = 125.5 \pm 0.2$ (stat.) ± 0.6 (syst.) GeV

Higgs to fermions

• Observation via ZZ*, WW* and $\gamma\gamma$ decay modes

• Is the discovered Higgs boson coupling to fermions?

- guarks?
 Most likely yes, because of the quark loop in gg-fusion/photon decay.
 Nevertheless a direct measurement to quarks is necessary (H→bb)

- leptons?
 This is the question that the H→TT/µµ analyses are addressing
 ATLAS & CMS updated TT results from December 2013!!

Higgs to fermions (bb)

H→TT significant excess observed

ATLAS-CONF-2013-108

Number of	events in h	nighest
BDT-score	bin	
Signal	8.7±2.5	
Bckgr.	8.7±2.4	
Data	19	

Measured signal strength: $\mu = 1.4 \pm 0.5$

Consistent with SM Higgs boson predictions !

- ATLAS observes significant excess of data events in high S/B region
 - **+ Expected** significance @ m_H=125 GeV : **3.2σ** (Probability: **6.6×10⁻⁴**)
 - **+Observed** significance @ m_H=125 GeV : 4.1σ

*Probability that the observed excess is due to a background fluctuation: 2×10^{-5}

• <u>H→ττ</u> (strong) evidence, observed by ATLAS

$H \rightarrow \tau \tau$ in CMS

• TT Evidence confirmed by CMS as well!!

arXiv:1401.5041

$\mu = \sigma / \sigma_{\rm SM} = 0.87 \pm 0.29$

• 4σ strong evidence, when CMS combines fermionic channels bb and $\tau\tau$

Channel	Signif			
M _H = 125 GeV	Expected	Observed	μ	
VH→bb	2.1 σ	2.1σ	1.0±0.5	
Η→ττ	3.6σ	3.4σ	0.87±0.29	
Combination	4.2σ	4.0σ	0.90±0.26	

AVBF H—>TT event

May 2012

- MU PT=53 GeV - el PT=34 GeV - ET^{MISS}=102 GeV

- m=127 GeV - BDT=0.99

- **BR (H—>µµ) very small** ~2.2×10⁻⁴ (~10 times smaller than $\gamma\gamma$)
- Fit m_{µµ} with analytic signal+background shape
- Current sensitivity not sufficient for conclusive statement
- ATLAS: 95% CL limit @ 125 GeV: expected(observed) 8.2(9.8)×SM
- CMS: 95% CL limit @ 125 GeV: expected(observed) 5.1(8.2)×SM

Signal strength: probe production rate

Signal strength: probe production rate

arXiv:1307.1427v1

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

Production processes

arXiv:1307.1427, Phys. Lett. B 726 (2013), pp. 88-119

- Coupling strength to vector bosons Vs that to fermions
- Compatible with SM=(1,1) within 68% CL contour
- Ratio of vector-boson mediated production compared to gluon (top)initiated production
 - + $\mu_{VBF}/\mu_{ggF+ttH} = 1.4^{+0.7}_{-0.5}$
- Looking purely for vector-boson fusion production

More than 3σ evidence for VBF!

Higgs boson properties

- SM Prediction: J^P=0⁺
- It decays into two photons, so not spin-1 particle (Landau-Yang theorem)
- Use angular distributions of the decay products in the H rest frame. Use MVA to distinguish different scenarios

♦ 0⁻, 1⁺, Spin 2⁺ (Graviton inspired models)

Higgs boson spin

arXiv:1307.1432

• H—>ZZ* alone excludes non SM spin scenarios @ 95%

 3 channels (ZZ*, WW*, γγ) combined exclude 2+ @ 99.9% CL, independent of production mode

Data compatible with the SM 0⁺ hypothesis

Supersymmetry

- Where to start?
- Huge parameter space, but guiding principals a

• SUSY searches strategy driven by cross-section and luminosity

 Typically searches probing signatures with energetic jets and large Missing Energy, and 0,1,2 leptons Ni

mSUGRA/CMSSM limits

- ✦ limit at large m₀ from 0-1l+3b-jet analysis
- Squark mass > **1.7 TeV**
 - limit from untagged 0-lepton analysis

Searches for direct stop production

- Dedicated program for **stop** and **sbottom** searches ongoing
- Maximum stop exclusion of 680 GeV, but it can be significantly lowered depending on mass and mixing parameters

m_{ĩ,} [GeV] **33**

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[ft	Ъ ⁻¹]	Mass limit	-	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_1^\pm \rightarrow q q W^\pm \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell v / v v) \tilde{\chi}_1^0 \\ GMSB (\tilde{\ell} \ NLSP) \\ GMSB (\tilde{\ell} \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (higgsino-bino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GFavitino \ LSP \end{array} $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	q, g g	1.2 TeV 1.1 TeV 1.1 TeV 740 GeV 1.3 Te 1.18 TeV 1.12 TeV 1.24 TeV 1.4 1.07 TeV 619 GeV 900 GeV 690 GeV 690 GeV 645 GeV	1.7 TeV $m(\tilde{q})=m(\tilde{g})$ any $m(\tilde{q})$ any $m(\tilde{q})$ $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $tan\beta<15$ TeV $tan\beta>18$ $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>220$ GeV $m(\tilde{\chi}_{1}^{0})>200$ GeV $m(\tilde{\chi}_{1}^{0})>200$ GeV $m(\tilde{\chi}_{1}^{0})>200$ GeV $m(\tilde{\chi}_{1}^{0})>10^{-4}$ eV	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-068 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{k}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{1} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	00, 00, 01, 00, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02,	1.2 TeV 1.1 TeV 1.34 Tu 1.34 Tu 1.3 Te	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) < 600 \ {\rm GeV} \\ m(\tilde{\chi}_{1}^{0}) < 350 \ {\rm GeV} \\ {\rm eV} \qquad m(\tilde{\chi}_{1}^{0}) < 400 \ {\rm GeV} \\ {\rm W} \qquad m(\tilde{\chi}_{1}^{0}) < 300 \ {\rm GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow t \tilde{\chi}_1^\pm \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow t \tilde{\chi}_1^\pm \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \ \tilde{t}_1 \rightarrow b \tilde{\chi}_1^\pm \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \ \tilde{t}_1 \rightarrow W \tilde{\lambda}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{netural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \ \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1 - 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t: 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \vec{\tilde{b}}_{1} \\ \vec{\tilde{b}}_{1} \\ \vec{\tilde{t}}_{1} \\ \vec{\tilde{t}}_{2} $	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-220 GeV 225-525 GeV 150-580 GeV 200-610 GeV 90-200 GeV 500 GeV 271-520 GeV	$\begin{split} & m(\widetilde{\chi}_{1}^{0}) < 90 \text{GeV} \\ & m(\widetilde{\chi}_{1}^{\pm}) = 2 m(\widetilde{\chi}_{1}^{0}) \\ & m(\widetilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ & m(\widetilde{\chi}_{1}^{0}) = m(\widetilde{t}_{1}) - m(\mathcal{W}) - 50 \text{GeV}, m(\widetilde{t}_{1}) < < m(\widetilde{\chi}_{1}^{\pm}) \\ & m(\widetilde{\chi}_{1}^{0}) = 0 \text{GeV} \\ & m(\widetilde{\chi}_{1}^{0}) = 150 \text{GeV} \\ & m(\widetilde{\chi}_{1}^{0}) > 150 \text{GeV} \\ & m(\widetilde{\chi}_{1}^{0}) = m(\widetilde{\chi}_{1}^{0}) + 180 \text{GeV} \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \end{array} $	$2 e, \mu 2 e, \mu 2 \tau 3 e, \mu 3 e, \mu 1 e, \mu$	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{bmatrix} \tilde{\ell} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{2}^{0} \end{bmatrix} $	85-315 GeV 125-450 GeV 180-330 GeV 600 GeV 315 GeV 285 GeV	$\begin{array}{c} m(\widetilde{\chi}_{1}^{0}){=}0 \ GeV \\ m(\widetilde{\chi}_{1}^{0}){=}0 \ GeV, \ m(\widetilde{\ell}, \widetilde{\nu}){=}0.5(m(\widetilde{\chi}_{1}^{+}){+}m(\widetilde{\chi}_{1}^{0})) \\ m(\widetilde{\chi}_{1}^{0}){=}0 \ GeV, \ m(\widetilde{\tau}, \widetilde{\nu}){=}0.5(m(\widetilde{\chi}_{1}^{+}){+}m(\widetilde{\chi}_{1}^{0})) \\ m(\widetilde{\chi}_{1}^{+}){=}m(\widetilde{\chi}_{2}^{0}), \ m(\widetilde{\chi}_{1}^{0}){=}0, \ m(\widetilde{\ell}, \widetilde{\nu}){=}0.5(m(\widetilde{\chi}_{1}^{+}){+}m(\widetilde{\chi}_{1}^{0})) \\ m(\widetilde{\chi}_{1}^{+}){=}m(\widetilde{\chi}_{2}^{0}), \ m(\widetilde{\chi}_{1}^{0}){=}0, \ sleptons \ decoupled \\ m(\widetilde{\chi}_{1}^{+}){=}m(\widetilde{\chi}_{2}^{0}), \ m(\widetilde{\chi}_{1}^{0}){=}0, \ sleptons \ decoupled \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(\tilde{e}, \tilde{\mu})_+ \tau(\tilde{e}, \tilde{g})_+ \tau(\tilde{e}, \tilde{\mu})_+ \tau(\tilde$	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{g} \\ \tilde{\chi}_1^{0} \\ \tilde{\chi}_1^{0} \\ \tilde{q} \end{array} $	270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{\chi}_1^\pm)\text{-}m(\tilde{\chi}_1^0) {=} 160 \; MeV, \; \tau(\tilde{\chi}_1^\pm) {=} 0.2 \; ns \\ m(\tilde{\chi}_1^0) {=} 100 \; GeV, \; 10 \; \mus {<} \tau(\tilde{g}) {<} 1000 \; s \\ 10 {<} tan\beta {<} 50 \\ 0.4 {<} \tau(\tilde{\chi}_1^0) {<} 2 \; ns \\ 1.5 {<} c\tau {<} 156 \; mm, \; BR(\mu) {=} 1, \; m(\tilde{\chi}_1^0) {=} 108 \; GeV \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{0}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \tilde{v} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{0}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e\tau \tilde{v} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \ \tilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	- 7 jets - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c} \tilde{\mathbf{v}}_{\tau} \\ \tilde{\mathbf{v}}_{\tau} \\ \tilde{\mathbf{q}}, \tilde{\mathbf{g}} \\ \tilde{\boldsymbol{\chi}}_{1}^{\pm} \\ \tilde{\boldsymbol{\chi}}_{1}^{\pm} \\ \tilde{\boldsymbol{\chi}}_{1}^{\pm} \\ \tilde{\mathbf{g}} \\ \tilde{\mathbf{g}} \\ \tilde{\mathbf{g}} \end{array} $	1. 1.1 TeV 1.2 TeV 760 GeV 350 GeV 916 GeV 880 GeV	61 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ $m(\tilde{q})=m(\tilde{g}), ct_{LSP}<1 mm$ $m(\tilde{\chi}_{1}^{0})>300 \text{ GeV}, \lambda_{121}>0$ $m(\tilde{\chi}_{1}^{0})>80 \text{ GeV}, \lambda_{133}>0$ BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , μ (SS) 0	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 800 GeV 704 GeV	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
*0	√s = 7 TeV full data p	√s = 8 TeV artial data	full o	8 TeV data			10 ⁻¹ 1	Mass scale [TeV]	34

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS SUSY Searches* - 95% CL Lower Limits Status: SUSY 2013								$\int \int dt = (4.6 - 22.9) \text{ fb}^{-1}$	4S Preliminar	
	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb		Mass limit	$\int \mathcal{L} dt = (4.0 - 22.3)$ is	Reference	
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM} (bino \text{ NLSP}) \\ \text{GGM} (wino \text{ NLSP}) \\ \text{GGM} (higgsino-bino \text{ NLSP}) \\ \text{GGM} (higgsino \text{ NLSP}) \\ \text{GGM} (higgsino \text{ NLSP}) \\ \end{array} $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	μ μ	1.7 TeV 1.2 TeV 1.2 TeV 1.1 TeV 740 GeV 1.3 TeV 1.18 TeV 1.12 TeV 1.12 TeV 1.4 TeV 1.4 TeV 619 GeV 900 GeV 690 GeV	$\begin{array}{l} m(\tilde{q}) \!=\! m(\tilde{g}) \\ & \text{any } m(\tilde{q}) \\ & \text{any } m(\tilde{q}) \\ & \text{any } m(\tilde{q}) \\ & m(\tilde{\chi}_1^0) \! =\! 0 \text{ GeV} \\ & m(\tilde{\chi}_1^0) \! =\! 0 \text{ GeV} \\ & m(\tilde{\chi}_1^0) \! =\! 0 \text{ GeV} \\ & tan\beta \! <\! 15 \\ & tan\beta \! >\! 15 \\ & tan\beta \! >\! 15 \\ & m(\tilde{\chi}_1^0) \! >\! 50 \text{ GeV} \\ & m(\tilde{\chi}_1^0) \! >\! 50 \text{ GeV} \\ & m(\tilde{\chi}_1^0) \! >\! 220 \text{ GeV} \\ & m(\tilde{\mathcal{H}}) \! >\! 220 \text{ GeV} \\ & m(\tilde{\mathcal{H}}) \! >\! 220 \text{ GeV} \\ \end{array}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-088 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152	
i ri	Gravitino LSP $\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$	0	mono-jet 3 <i>b</i>	Yes Yes	10.5 20.1	F ^{1/2} scale	645 GeV 1.2 TeV	$m(\tilde{g}) > 10^{-4} \text{ eV}$ $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$	ATLAS-CONF-2012-147 ATLAS-CONF-2013-061	

-No sign of SUSY particles (yet??) -For now: results interpretation, by deriving limits

	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0$	1 e,μ	2 b	Yes	20.3	$\hat{X}_{1}^{x}, \hat{X}_{2}^{v}$ 285	GeV	$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^{u}), m(\tilde{\chi}_1^{u})=0, \text{ sleptons decoupled}$	ATLAS-CONF-2013-093
lived	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^-$ Stable, stopped \tilde{g} R-hadron	Disapp. trk 0	1 jet 1-5 jets	Yes Yes	20.3 22.9	<i>x</i> [±] ₁ 270 G ğ	eV 832 GeV	m($\tilde{\chi}_{1}^{\pm}$)-m($\tilde{\chi}_{1}^{0}$)=160 MeV, $\tau(\tilde{\chi}_{1}^{\pm})$ =0.2 ns m($\tilde{\chi}_{1}^{0}$)=100 GeV, 10 μ s< $\tau(\tilde{g})$ <1000 s	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057
-gr	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$	(e, μ) 1-2 μ	-	-	15.9	$\tilde{\chi}_{1}^{0}$	475 GeV	$10 < \tan\beta < 50$	ATLAS-CONF-2013-058
Lor	GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	4.7	$\tilde{\chi}_1^0$ 230 GeV		$0.4 < \tau(\tilde{\chi}_1^0) < 2$ ns	1304.6310
	$qq, \chi_1 \rightarrow qq\mu$ (RPV)	μ , uspi. vo	x -		20.3	4	1.0 lev	$1.5 < c\tau < 156 \text{ mm}, \text{BR}(\mu) = 1, \text{ m}(\chi_1) = 108 \text{ GeV}$	ATLAS-CONF-2013-092
	LFV $pp { ightarrow} ilde{ u}_ au + X$, $ ilde{ u}_ au { ightarrow} e + \mu$	2 e, µ	-	-	4.6	$\tilde{\nu}_{ au}$	1	.61 TeV λ'_{311} =0.10, λ_{132} =0.05	1212.1272
	LFV $pp \rightarrow \tilde{v}_{\tau} + X$, $\tilde{v}_{\tau} \rightarrow e(\mu) + \tau$	1 $e, \mu + \tau$	-	-	4.6	$\widetilde{\nu}_{ au}$	1.1 TeV	λ'_{311} =0.10, $\lambda_{1(2)33}$ =0.05	1212.1272
>	Bilinear RPV CMSSM	1 e,µ	7 jets	Yes	4.7	q, ğ	1.2 TeV	$m(\tilde{q})=m(\tilde{g}), \ c\tau_{LSP}<1 \text{ mm}$	ATLAS-CONF-2012-140
L L	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{v}_{\mu}, e \mu$	ĩ _e 4 e,μ	-	Yes	20.7	$\tilde{\chi}_1^{\pm}$	760 GeV	m($\widetilde{\chi}_1^0$)>300 GeV, λ_{121} >0	ATLAS-CONF-2013-036
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e\tau$	\tilde{v}_{τ} 3 $e, \mu + \tau$	-	Yes	20.7	$\tilde{\chi}_1^{\pm}$	350 GeV	$m(\tilde{\chi}_{1}^{0})>80 \text{ GeV}, \lambda_{133}>0$	ATLAS-CONF-2013-036
	$\tilde{g} \rightarrow q q q$	0	6-7 jets	-	20.3	ĝ	916 GeV	BR(t)=BR(b)=BR(c)=0%	ATLAS-CONF-2013-091
	$ ilde{g} ightarrow ilde{t}_1 t, ilde{t}_1 ightarrow bs$	2 <i>e</i> ,μ (SS)	0-3 <i>b</i>	Yes	20.7	ĝ	880 GeV		ATLAS-CONF-2013-007
<u> </u>	Scalar gluon pair, sgluon $ ightarrow qar{q}$	0	4 jets	-	4.6	sgluon 100-287	GeV .	incl. limit from 1110.2693	1210.4826
he	Scalar gluon pair, sgluon $ ightarrow t\overline{t}$	2 <i>e</i> , μ (SS)	1 <i>b</i>	Yes	14.3	sgluon	800 GeV		ATLAS-CONF-2013-051
Ð	WIMP interaction (D5, Dirac χ)	0	mono-jet	Yes	10.5	M* scale	704 GeV	m(χ)<80 GeV, limit of<687 GeV for D8	ATLAS-CONF-2012-147
			Г. с	T-1/					
	vs = 7 lev full data	$\gamma s = 8$ lev partial data	√s = t full d	s iev lata		10^{-1}	1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Exotics

- Many extensions of the SM other than SUSY have been developed
 - GUT, Extra dimensions
 - Heavy resonances (eg Z')
 - Dark matter
 - Monojet signatures
 - Vector like quarks
 - Same sign dileptons and b-jets signatures

Exotics: ee, µµ

Limits (95% CL): M(Z')>2.8 TeV (ee); M(Z')>2.5 TeV (µµ)

Dark matter searches

 $\overline{\chi}$

W*

arXiv:1309.4017

- Search for Weak Interacting Massive Particle
- pp—>**XX**+Х
 - X: jet, photon, W, or Z produced in Initial State Radiation $\sim_{\overline{d}}$
- ATLAS WIMP searches where W/Z decay hadronically: events with large jet and MissingE_T

 DM-nucleon scattering cross section: ATLAS contributes to region m_x<10 GeV, where the direct detection experiments have less sensitivity
38

		ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)				
	Large ED (ADD) : monojet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]	4.37 TeV M _D (δ=2)			
(0	Large ED (ADD) : monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _D (0=2)	ATLAS		
ů.	Large ED (ADD) : diphoton & dilepton, m	L=4.7 fb ⁻⁺ , 7 TeV [1211.1150]	4.18 TeV M _S (HLZ δ=3,	NLO) Preliminary		
sic	OED : alphoton + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV Compact. scale R ⁻¹			
i.	$S'/Z_2 ED$: dilepton, m_{\parallel}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	4.71 TeV M _{KK} ~ R	- 0.4)		
m	RS1 : dilepton, m	L=20 fb", 8 TeV [ATLAS-CONF-2013-017]	2.47 TeV Graviton mass (K/M _{PI}	= 0.1)		
di	RS1: WW resonance, m _{T, WW}	L=4.7 fb , 7 TeV [1208.2880]	1.23 TeV Graviton mass $(k/M_{Pl} = 0.1)$	$1 dt = (1 - 20) fb^{-1}$		
e.	Buik RS . 22 resonance, m	L=7.2 fb ^{-*} , 8 TeV [ATLAS-CONF-2012-150]	850 GeV Graviton mass (K/M _{PI} = 1.0)	J Lui = (1 - 20) ID		
Xt	RS g \rightarrow tt (BR=0.925) : tt \rightarrow 1+jets, m	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]	2.07 TeV g _{KK} mass	s = 7, 8 TeV		
ш	ADD BH $(M_{TH}/M_D=3)$: SS dimuon, $N_{ch. part.}$	L=1.3 fb ^{-*} , 7 TeV [1111.0080]	1.25 TeV M _D (0=0)			
	ADD BH (m_{TH}/m_p-3) . leptons + jets, $2p_T$	L=1.0 fb ^{-*} , 7 TeV [1204.4646]	1.5 TeV M _D (0=b)			
	Quantum black hole . dijet, F (m)	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4.11 TeV M _D (δ=6)			
-		L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	7.6 TeV A			
0	qqii Ci . ee α μμ., m	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]	13.9 Te	A (constructive int.)		
	uutt CT: SS dilepton + jets + $E_{T,miss}$	L=14.3 fb", 8 TeV [ATLAS-CONF-2013-051]	3.3 TeV A (C=1)			
	2' (SSM) : m _{ee/μμ}	L=20 fb", 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV Z' mass			
	$Z^{\prime}(SSM): m_{tt}$	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass			
Ň	\angle (leptophobic topcolor) : tt \rightarrow l+jets, m	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mass			
	VV' (SSWI): m _{T,e/μ}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' mass			
	$VV' (\rightarrow tq, g = 1) : m_{tq}$	L=4.7 fb ⁻¹ , 7 TeV [1209.6593]	430 GeV W' mass			
	$W_R (\rightarrow tD, LRSIVI) : m_{tb}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' mass			
a	Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1° gen. LQ mass			
Ľ	Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 [™] gen. LQ mass			
	Scalar LQ pair (β=1) : kin. vars. in ττjj, τvjj	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3 [™] gen. LQ mass			
200	4 [™] generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t' mass			
N X K	4th generation : $DD \rightarrow SS$ dilepton + jets + $E_{T,miss}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV b' mass			
Ne	Vector-like quark : TT→ Ht+X	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	790 GeV T mass (isospin doublet)			
	Vector-like quark : CC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charge -1/3, coupling	$\kappa_{qQ} = v/m_Q$		
÷.	Excited quarks : y-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* mass			
in Ci	Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV q* mass			
Щæ	Excited b quark : W-t resonance, m _{wt}	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 Gev b* mass (left-handed coupling)			
	Excited leptons : I-y resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV I* mass (Λ = m(I*))			
	Techni-hadrons (LSTC) : dilepton, m _{ee/µµ}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ_{T}/ω_{T} mass $(m(\rho_{T}/\omega_{T}) - m(\pi_{T}) = M_{W})$			
	Techni-hadrons (LSTC) : WZ resonance (MI), m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	920 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a_{T}) =$	= 1.1 <i>m</i> (ρ _T))		
5	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass $(m(W_R) = 2 \text{ TeV})$			
e He	eavy lepton N [±] (type III seesaw) : Z-I resonance, m _{zi}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-019]	N^{z} mass ($ V_{e} = 0.055$, $ V_{\mu} = 0.063$, $ V_{\tau} = 0$)			
õ	H_{L}^{-} (DY prod., BR($H_{L}^{-} \rightarrow II$)=1): SS ee ($\mu\mu$), m_{II}	L=4.7 fb ⁻¹ , 7 TeV [1210.5070]	409 Gev H ^{III} mass (limit at 398 GeV for μμ)			
	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Scalar resonance mass			
Multi-	charged particles (DY prod.) : highly ionizing tracks	L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 GeV mass (q = 4e)			
Mag	gnetic monopoles (DY prod.) : highly ionizing tracks	L=2.0 fb ⁻¹ , 7 TeV [1207.6411]	862 GeV mass			
		10 ⁻¹	1 10	10 ²		
Mass scale [TeV]						

*Only a selection of the available mass limits on new states or phenomena shown

-No sign of Exotic particles (yet??) -For now: results interpretation, by deriving limits

*Only a selection of the available mass limits on new states or phenomena shown

What to expect from the future LHC?

LHC planning

LHC machine in 2015

• LHC will start again in 2015 for the Run 2

Expectation	2015	2016-2017
CM energy [TeV]	13	13-14
Integrated L [fb ⁻¹]	15-30	80-120
Bunch spacing [ns]	25	25
Pileup <µ>	~25	~40

- 2015
 - ♦ \sqrt{s} energy expected to be 13 TeV and average pileup at 25
- 2016-2017
 - LHC likely to reach its design energy: $\sqrt{s} = 14 \text{ TeV}$

Cross sections increase

• Physics reach, largely driven by increase in partonic luminosities

Significant cross-section as mass, M_X, grows

 Backgrounds will increase as well, though. Fortunately not with the same rate

Higgs @ 13-14 TeV

- **bbH** might be relevant too
- Total cross section for 14 TeV is ~2.5 times that for 8TeV (dominated by ggF)
- All very similar except for ttH, which shows a larger increase : factor of 5 for 14 TeV
- Expect in **2015** alone alone to be **2×Run-1** statistics.
- Full Run-2: 10-15 × Run-1 statistics

Higgs boson coupling measurements

Higgs self-coupling HHH? Ongoing studies for very challenging analyses Estimate: ~20-30% precision

arXiv:1401.6081

 $\kappa_{\mu\mu}$

[23, 23]

[8, 8]

- Background

SM Signal

 $\kappa_{Z\gamma}$

[41, 41]

[10, 12]

 $H \rightarrow Z\gamma$, $Z \rightarrow uu/ee$

s = 14 TeV

 κ_b

Ldt = 3000 fb⁻

ATLAS Simulation

 \mathcal{K}_t

[14, 15]

[7, 10]

 κ_{τ}

[6, 8]

[2, 5]

SUSY prospects towards HL-LHC

- HL-LHC enables characterization of any new particles found in runs 2 and 3
- HL-LHC significantly extends discovery reach
 - Probe stop masses up to M~1.5 TeV
 - Probe chargino/neutralino masses up to M~1 TeV
 - Probe gluino masses well beyond 2 TeV

ATLAS-PHYS-PUB-2013-011

13-14 TeV running

• Hugely increased potential for discovery of heavy particles at 13-14 TeV

LHC Run 2 and Run 3

2015 Run 2: $\sqrt{s\approx 13-14}$ TeV, $\int Ldt\approx 120$ fb⁻¹, pileup $\mu\approx 43$ $\downarrow peak=1.6\times 10^{34}$ cm⁻²s⁻¹ 2016 L^{peak}=1.6x10³⁴ cm⁻²s⁻¹ 2017 2018 LS2: phase 1 upgrade 2019 Run 3: $\sqrt{s}\approx 14 \text{ TeV}$, $\int Ldt\approx 350 \text{ fb}^{-1}$, pileup $\mu = 50-80 - 2 \sim 350 fb^{-1}$ 2020 2021 L^{peak}≈2-3x10³⁴ cm⁻²s⁻¹ 2022 2023 2024 LS3: phase 2 upgrade

• Run 2: Need a few (~5) inverse fb⁻¹ to exceed currents limits

- Expected for summer 2015
 - Stay tuned for Moriond 2016
- Limits will improve by a factor of ~2 end of Run 2
- Run 2 is critical for searches
- BSM searches benefit a lot by the increase of \sqrt{s} energy
 - If nothing new is seen then
 - Slower increase in limits during Run 3
 - * Run 3 basically more a measurement programme than a search program

Epilogue

- Fantastic delivery from LHC during exciting Run-I
- Detectors maintained excellent performance despite beyond design pileup
- Higgs boson discovered @ m_H=125.5 GeV !!
 - Move beyond observation
 - ✤ J^P=0⁺ strongly favoured
 - Higgs analyses are now part of the measurement programme
 - Coupling measurements
- Wide range of searches explore more challenging parts of SUSY space, and complex BSM signatures → No sign yet of a second discovery
- What to expect in Run-II starting in 2015?
 - Higgs (more) precise measurement programme
 - ttH evidence/observation

SUSY and BSM searches will benefit a lot from the LHC energy increase

★ A few fb⁻¹ are enough to exceed current limits → Stay tuned

Back-up slides

Handling pileup

N_{pv}

Top quark physics

- Excellent description by NNLO+NNLL
- Top quark measurements are systematics-limited. Ongoing efforts on reducing systematic uncertainties

What about Higgs boson mass?

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

Review of H decay modes and status searches in 1975

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

Higgs events candidates in ATLAS & CMS

27

CMS Higgs width measurement

Width measurement :

- Very narrow resonance at low mass: ~4 MeV at 125 GeV
- Signal modeling: analytic convolution of a : Breit-Wigner distribution (modeling a non-zero decay width) Gaussian distribution (modeling the non-zero detector resolution)

• Method:

profile likelihood estimator is used to calculate **upper limits** on the **width**

- First direct upper limit on the Higgs boson width: an upper limit on the natural width of the Higgs boson:
 - 6.9 GeV at 95% CL (observed)
 - 5.9 GeV at 95% CL (expected)

SM Higgs boson width vs mass

Mass measurement with H—>YY

m_{Higgs} = 126.8 ± 0.2 (stat.) ± 0.7 (syst.) GeV

m_{Higgs} = 125.4 ± 0.5 (stat.) ± 0.6 (syst.) GeV

larger statistical uncertainty in CMS, is mostly coming from the lower observed signal yield wrt ATLAS

Mass measurement with H—>ZZ*

ttH

• Very challenging mode

- Low rate
- Complex final state
- Enormous background
- Direct access to top Yukawa coupling
- $ttH(\gamma\gamma)$
 - ✤ Run-I ATLAS: 5.3 (6.4) × SM
 - ✤ Run-I CMS: 5.4 (5.3) × SM
- ttH(bb)
 - ◆ 7 TeV ATLAS: 13.1 (10.5) × SM
 - ✤ Run-I CMS: 5.2 (4.1) × SM
- •CMS combination of bb, γγ, ττ, WW, ZZ
 - ✤ Run-I CMS: 4.3 (1.8) × SM

https://twiki.cern.ch/twiki/bin/view/CMSPublic/ttHCombinationTWiki

ATLAS-CONF-2013-080

60

Higgs invisible decays

Higgs differential cross section

Differential cross section

atlas-conf-2013-072

- The clear signal in H→yy allows the measurement of a differential cross section
- The analysis is done inclusively and dominated by ggF
- Results are presented at the particle level
- There is good agreement with the prediction $P(\chi^2)>0.3$

62

15

mSUGRA/CMSSM

A particular mSUGRA/CMSSM model point is specified by five parameters:

the universal scalar mass m0,

the universal gaugino mass m1/2,

 $tan(\beta)=30,$ $A_0=-2m_0,$ the universal trilinear scalar coupling A0, u >0

the ratio of the vacuum expectation values of the two Higgs fields $\tan\beta$,

and the sign of the higgsino mass parameter μ .

SUSY Electroweak production

Limits at the electroweak produced chargino, neutralino mass plane

DM associated production

Direct dark matter searches

arXiv:1309.4017

The operators studied in these mono-jet and mono-photon searches assume equal couplings of the dark matter particles to up-type and down-type quarks (C(u) = C(d)).

For W boson radiation there is **interference between the diagrams in which the W boson is** radiated from the u-quark or the d-quark.

In the case **of equal coupling**, the interference is destructive and gives a small W boson emission rate.

If, however, the up-type and down-type couplings have opposite signs (C (u) = -C (d)) to give constructive interference, the relative rates of gluon, photon, W or Z boson emission can change dramatically, such that mono-W-boson production is the dominant process

Direct dark matter searches

Some cross-sections

SUSY prospects

- Significant increase in cross-section for SUSY particles as well
- Specially going to higher masses, where the improvement can reach even 3 orders of magnitude

Fit model

We run a simultaneous fit on all these (along with the bins from $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{lep}$)

Higgs to fermions (TT)

ATLAS-CONF-2013-108

H→TT significant excess observed

ATLAS-CONF-2013-108

	LepLep	LepHad	HadHad
Signal	5.7±1.7	8.7±2.5	8.8±2.2
Bckgr.	13.5±2.4	8.7±2.4	11.8±2.6
Data	19	19	19

Signal	2.6±0.8	8.0±2.5	3.6±1.1
Bckgr.	20.2±1.8	32± 4	11.2±1.9
Data	20	34	15

log(S / B)

- ATLAS observes significant excess of data events in high S/B region
 - **+ Expected** significance @ m_H=125 GeV : **3.2σ** (Probability: **6.6×10**⁻⁴)
 - **+Observed** significance @ m_H=125 GeV : 4.1σ

*Probability that the observed excess is due to a background fluctuation: 2×10^{-5}

• <u>H→TT (strong) evidence, observed by ATLAS</u>
Is the excess compatible with a $m_H=125$ GeV Higgs boson?

• Observed signal compatible with m_H=125 GeV

DiTau mass reconstruction: MMC

The role of the MMC mass in the analysis

- Typically Higgs searches analyses have been using the mass distribution to fit the model to data
- We made a decision to <u>include the</u> <u>MMC mass as an input variable to the</u> <u>BDT and fit the BDT score distribution</u>
 - Mass resolution cannot be compared with the 4l or γγ, channels that provide the Higgs boson mass measurement
 - Take advantage of the MMC mass correlations which differ for signal and backgrounds
 - Boost the analysis sensitivity to answer the question wether the Higgs boson recently discovered directly couples to τ's

