Discrete parafermions and quantum-group symmetries

Yacine Ikhlef
LPTHE (CNRS/Paris-6)
joint work with
R. Weston (Edinburgh),
M. Wheeler (LPTHE),
P. Zinn-Justin (LPTHE).

Dourdan, 23/01/2014

Outline

1. Introduction
2. The Bernard-Felder construction
3. Mapping to loop models

1. Introduction

Discretely holomorphic functions

- Discrete function: $F(z)$ on midpoints of square lattice \mathcal{L}

- Discrete "Cauchy-Riemann" equation:

$$
e^{\frac{i \pi}{4}} F\left(z_{1}\right)+e^{\frac{3 i \pi}{4}} F\left(z_{2}\right)+e^{\frac{5 i \pi}{4}} F\left(z_{3}\right)+e^{\frac{7 i \pi}{4}} F\left(z_{4}\right)=0
$$

- Short-hand notation:

$$
\sum_{\diamond} F(z) \delta z=0
$$

Loop models in Statistical Mechanics

The Temperley-Lieb loop model

- Plaquette configurations:

x

y
- Lattice configurations:

- Boltzmann weights:

$$
W(C)=x^{N_{x}(C)} y^{N_{y}(C)} n^{N_{\ell}(C)}
$$

- Partition function: $\quad Z=\sum_{\text {config. } C} W(C)$

Loop models in Statistical Mechanics

Correlation functions

- Averaging on Boltzmann weights:

$$
\langle f(C)\rangle:=\frac{1}{Z} \sum_{C} w(C) f(C) .
$$

- Two-leg correlation function:

$$
G\left(z_{1}, z_{2}\right):=\frac{1}{Z} \sum_{C \mid z_{1}, z_{2} \in \text { same loop }} W(C)
$$

- Phases in scaling limit:
- Non-critical phase:

$$
\begin{aligned}
& G\left(z_{1}, z_{2}\right) \sim \exp \left(-\left|z_{1}-z_{2}\right| / \xi\right) \\
& G\left(z_{1}, z_{2}\right) \sim\left|z_{1}-z_{2}\right|^{-2 x_{2}}
\end{aligned}
$$

- Critical phase:
- "Coulomb-gas" studies \Rightarrow TL model is critical for $0<n \leq 2$.

Discretely holomorphic observables in loop models

- Pick a pair of boundary points $(a, b) \quad \longrightarrow \quad$ define BC.
- Define correlation function:

$$
F_{s}(z):=\frac{1}{Z} \sum_{C \mid z \in \text { open path }} W(C) e^{i s \theta_{a \rightarrow z}(C)}
$$

$\left[\theta_{a \rightarrow z}:=\right.$ winding angle of red arc from a to $\left.z\right]$

- Theorem: $n=2 \sin \frac{\pi s}{2} \quad \Rightarrow \quad \forall \diamond \in \Omega, \quad \sum_{\diamond} F_{s}(z) \delta z=0$.

Algebraic structure behind discrete holomorphicity?

- Discretely holomorphic observables like F_{s} exist in various models: $\mathrm{TL}, \mathrm{O}(n), \mathbb{Z}_{N}$ clock models \ldots
- Rhombic lattice \Rightarrow additional parameter α

Modified Cauchy-Riemann equation:
$e^{-\frac{i \alpha}{2}} F\left(z_{1}\right)+e^{\frac{i \alpha}{2}} F\left(z_{2}\right)-e^{-\frac{i \alpha}{2}} F\left(z_{3}\right)-e^{\frac{i \alpha}{2}} F\left(z_{4}\right)=0$

- Observations:

1. F_{s} satisfies CR_{α} when $W \equiv$ integrable Boltzmann weights
2. $\alpha \equiv$ spectral parameter

- Q: general relation discrete holomorphicity \leftrightarrow integrability?

Discrete holomorphicity in Physics and Mathematics

- [Dotsenko,Polyakov 88] : Linear relations for fermions in Ising
- [Smirnov 01-06] : Conf. inv. for interfaces in perco+Ising
- [Cardy,Riva,Rajabpour,YI 06-09] : Discr. holo. in various lattice models, obs. relation to integrability
- [Smirnov, Chelkak,Hongler,Izyurov,Kytölä 09-12] : Scaling limit of interfaces+corr. func. in Ising
- [Duminil-Copin,Smirnov 10] : Proof of connectivity constant for SAW on honeycomb
- [Beaton, de Gier,Guttmann,Jensen 11-12] : Critical boundary parameter for SAW on honeycomb
- [Fendley 12] : Discr. holo. from topological QFT
- [Alam,Batchelor 12] : CR eq \leftrightarrow star-triangle in \mathbb{Z}_{N} models
- [Hongler,Kytölä,Zahabi 12] : Discr. holo. for non-local currents in Ising, transfer-matrix formalism

2. The Bernard-Felder construction

Hopf algebras

Bi -algebra structure

- Product $m:\left\{\begin{array}{l}\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} \\ (a, b) \mapsto a . b\end{array}\right.$
- Coproduct $\Delta:\left\{\begin{array}{l}\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \\ a \mapsto \sum_{i} b_{i} \otimes c_{i}\end{array}\right.$

$$
i_{a}^{\downarrow} \xrightarrow{\Delta} \sum_{i} \oint_{b_{i}} i_{c_{i}}
$$

- $\Delta(a . b)=\Delta(a) \cdot \Delta(b), \quad \Delta(a+\lambda b)=\Delta(a)+\lambda \Delta(b)$
- $\Delta(\Delta(a))=\sum_{i} \Delta\left(b_{i}\right) \otimes c_{i}=\sum_{i} b_{i} \otimes \Delta\left(c_{i}\right)$
- Example: enveloping algebra of a Lie algebra g
- g Lie algebra, with bracket $\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c}$
- $\mathcal{A}:=U(g)=\operatorname{span}\left[\right.$ words on alphabet $\left.\left\{X_{a}\right\}\right]$
- bracket \equiv commutator $([a, b]=a b-b a)$
- Trivial coproduct $\Delta\left(X_{a}\right)=X_{a} \otimes \mathbf{1}+\mathbf{1} \otimes X_{a}$

Hopf algebras

Tensor-product representations

- V finite-dimensional vector space Map $\pi: \mathcal{A} \rightarrow \operatorname{End}(V)$ is a representation of \mathcal{A} iff:
- π is linear and surjective,
- π is a morphism: $\pi(a b)=\pi(a) \pi(b)$.
- The coproduct defines higher-dim. representations:

$$
\Delta(a)=\sum_{i} b_{i} \otimes c_{i} \quad \longrightarrow \quad \pi_{12}(a):=\sum_{i} \pi_{1}\left(b_{i}\right) \otimes \pi_{2}\left(c_{i}\right)
$$

- Iterate: $\oint_{a}^{b} \xrightarrow{\Delta^{L-1}} \sum_{i} \oint_{a_{i}^{(1)}} a_{a_{i}^{(2)}} a_{i}^{(3)} \oint_{a_{i}^{(L)}}^{b}$
- Example: $\mathcal{A}=U(g)$, for a Lie algebra g

$$
\pi^{(L)}\left(X_{a}\right)=\sum_{m=1}^{L} 1 \otimes \cdots \otimes \mathbf{1} \otimes \underset{\substack{\uparrow \\ m-\text { th }}}{ } \mathbf{1}\left(X_{a}\right) \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1}
$$

Hopf algebras

The R-matrix

- The two representations $V_{1} \otimes V_{2}$ and $V_{2} \otimes V_{1}$ are isomorphic.
- Intertwiner $R_{12}: V_{1} \otimes V_{2} \rightarrow V_{2} \otimes V_{1}$ such that:

$$
\forall a \in \mathcal{A}, \quad R_{12} \pi_{12}(a)=\pi_{21}(a) R_{12}
$$

- Expand coproduct $\left[\pi_{12}(a)=\sum_{i} \pi_{1}\left(b_{i}\right) \otimes \pi_{2}\left(c_{i}\right)\right]$:

- Consistency condition $=$ Yang-Baxter equation:
$\left(R_{23} \otimes \mathbf{1}\right) \cdot\left(\mathbf{1} \otimes R_{13}\right) \cdot\left(R_{12} \otimes \mathbf{1}\right)=\left(\mathbf{1} \otimes R_{12}\right) \cdot\left(R_{13} \otimes \mathbf{1}\right) \cdot\left(\mathbf{1} \otimes R_{23}\right)$

Non-local conserved currents

[Bernard-Felder, 91]

- Generators of $\mathcal{A}: \quad\left\{J_{1}, J_{2} \ldots\right\}$ and $\left\{\mu_{1}, \mu_{2} \ldots\right\}$. Assume the coproduct of \mathcal{A} has the following form:

$$
\begin{aligned}
& \Delta\left(J_{k}\right)=J_{k} \otimes \mathbf{1}+\mu_{k} \otimes J_{k} \quad \| \xrightarrow{\Delta} \quad|\quad+\rightarrow+| \\
& \Delta\left(\mu_{k}\right)=\mu_{k} \otimes \mu_{k} \\
& \rightarrow+\xrightarrow{\Delta} \rightarrow+-\nmid
\end{aligned}
$$

- Iteration of coproduct \Rightarrow "conserved charges":

$$
Q_{k}:=\Delta^{L-1}\left(J_{k}\right)=\sum_{m=1}^{L} \mu_{k} \otimes \cdots \otimes \mu_{k} \otimes J_{\substack { \uparrow \\
\begin{subarray}{c}{1{ \uparrow \\
\begin{subarray} { c } { 1 } }\end{subarray}} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1}
$$

- Non-local currents:

$$
\begin{aligned}
\psi_{k}(m) & :=\mu_{k} \otimes \cdots \otimes \mu_{k} \otimes J_{k} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1} \\
= & \rightarrow \mid \\
V_{1} & V_{m} \\
V_{1} & V_{L}
\end{aligned}
$$

Commutation relations

- From intertwining relations $\left[R_{12} \pi_{12}(a)=\pi_{21}(a) R_{12}\right]$:
- For $a=J_{k}$:

- For $a=\mu_{k}$:

$$
\rightarrow|-|-|+|=\rightarrow|-|-+-+-|-1+
$$

- Transfer matrix:

- Conservation laws:

$$
\forall a \in \mathcal{A}, \quad T . \pi^{(L)}(a)=\pi^{(L)}(a) . T
$$

The affine quantum group $\mathcal{A}=U_{q}\left(\widehat{s \ell_{2}}\right)$

- Generators: $E_{0}, E_{1}, F_{0}, F_{1}, T_{0}, T_{1}$ $\left\{E_{0}, E_{1}, F_{0}, F_{1}\right\}=$ raising/lowering ops, $\quad\left\{T_{0}, T_{1}\right\}=$ diag. ops.
- Product rules:

$$
\begin{array}{ll}
{\left[T_{0}, T_{1}\right]=0} & {\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{T_{i}-T_{i}^{-1}}{q-q^{-1}}} \\
T_{i} E_{j} T_{i}^{-1}=q^{2(-1)^{\delta_{i j}}} E_{j} & T_{i} F_{j} T_{i}^{-1}=q^{2(-1)^{\delta_{i j+1}}} F_{j} \\
(+ \text { higher order rules } \ldots) &
\end{array}
$$

- Coproduct rules:

$$
\begin{aligned}
& \Delta\left(E_{i}\right)=E_{i} \otimes \mathbf{1}+T_{i} \otimes E_{i} \quad \Delta\left(F_{i}\right)=F_{i} \otimes T_{i}^{-1}+\mathbf{1} \otimes F_{i} \\
& \Delta\left(T_{i}\right)=T_{i} \otimes T_{i}
\end{aligned}
$$

- Introduce $\bar{E}_{i}:=q T_{i} F_{i} \Rightarrow \Delta\left(\bar{E}_{i}\right)=\bar{E}_{i} \otimes \mathbf{1}+T_{i} \otimes \bar{E}_{i}$
- BF structure: $\left\{J_{k}\right\}=\left\{E_{0}, E_{1}, \bar{E}_{0}, \bar{E}_{1}\right\} \quad\left\{\mu_{k}\right\}=\left\{T_{0}, T_{1}\right\}$.

Evaluation representations of $\mathcal{A}=U_{q}\left(\widehat{s \ell_{2}}\right)$

- Representations are labelled by a complex number u Explicit form:

$$
\pi_{u}:\left\{\begin{array}{lll}
E_{0} \mapsto\left[\begin{array}{ll}
0 & 0 \\
u & 0
\end{array}\right] & \bar{E}_{0} \mapsto\left[\begin{array}{cc}
0 & u^{-1} \\
0 & 0
\end{array}\right] & T_{0} \mapsto\left[\begin{array}{cc}
q^{-1} & 0 \\
0 & q
\end{array}\right] \\
E_{1} \mapsto\left[\begin{array}{ll}
0 & u \\
0 & 0
\end{array}\right] & \bar{E}_{1} \mapsto\left[\begin{array}{cc}
0 & 0 \\
u^{-1} & 0
\end{array}\right] & T_{1} \mapsto\left[\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right]
\end{array}\right.
$$

- Intertwiner: $R(u / v) \pi_{u, v}=\pi_{v, u} R(u / v)$

$$
R(w)=\left[\begin{array}{cccc}
q w-(q w)^{-1} & 0 & 0 & 0 \\
0 & w-w^{-1} & q-q^{-1} & 0 \\
0 & q-q^{-1} & w-w^{-1} & 0 \\
0 & 0 & 0 & q w-(q w)^{-1}
\end{array}\right]
$$

$$
(w=u / v)
$$

Application to the six-vertex model

- Use basis for $V_{u}: \quad\{\uparrow, \downarrow\}$. Plaquette configurations:

- Boltzmann weights:

$$
R_{6 \mathrm{~V}}=\left[\begin{array}{cccc}
\omega_{1} & 0 & 0 & 0 \\
0 & \omega_{5} & \omega_{4} & 0 \\
0 & \omega_{3} & \omega_{6} & 0 \\
0 & 0 & 0 & \omega_{2}
\end{array}\right]
$$

- When $R_{6 \mathrm{~V}} \equiv R_{U_{q}\left(\widehat{s \ell_{2}}\right)}$, the 6 V model is integrable.

3. Mapping to loop models

From the TL model to the 6 V model

[Baxter, Kelland, Wu 73]

- Orient each loop independently:

- Partition function:

$$
Z=\sum_{C} x^{N_{x}(C)} y^{N_{y}(C)} e^{2 i \pi \lambda\left[N_{\ell}^{+}(C)-N_{\ell}^{-}(C)\right]}
$$

- Distribute phase factors locally:

From the TL model to the 6 V model (2)

- Vertex configurations:

- Six-vertex weights arising from loop model:
$\omega_{1}=\omega_{2}=x, \quad \omega_{3}=\omega_{4}=y, \quad\left\{\begin{array}{l}\omega_{5}=e^{+2 i \lambda \alpha} x+e^{-2 i \lambda(\pi-\alpha)} y \\ \omega_{6}=e^{-2 i \lambda \alpha} x+e^{+2 i \lambda(\pi-\alpha)} y\end{array}\right.$
- Set $q=-e^{2 i \lambda \pi}, w=e^{-2 i \lambda \alpha}$: $\omega_{1}=\omega_{2}=q w-\frac{1}{q w}, \quad \omega_{3}=\omega_{4}=w-\frac{1}{w} \Rightarrow \omega_{5}=\omega_{6}=q-\frac{1}{q}$.

Conserved currents in the 6 V model

$$
\left.\begin{array}{l}
-\left\{\begin{array}{l}
\Delta\left(E_{0}\right)=E_{0} \otimes \mathbf{1}+T_{0} \otimes E_{0} \\
\Delta\left(T_{0}\right)=T_{0} \otimes T_{0}
\end{array} \Rightarrow \mathrm{BF} \text { current } \psi_{0}\right. \\
\quad \psi_{0}(m)=T_{0} \otimes T_{0} \otimes \cdots \otimes T_{0} \otimes E_{0} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1} \\
m-\text { th }
\end{array}\right)
$$

- Commutation with R-matrix \Rightarrow linear relation:

$$
\psi_{0}\left(z_{1}\right)-\psi_{0}\left(z_{2}\right)-\psi_{0}\left(z_{3}\right)+\psi_{0}\left(z_{4}\right)=0 .
$$

- Similar construction for $E_{1}, \bar{E}_{0}, \bar{E}_{1} \rightarrow \psi_{1}, \bar{\psi}_{0}, \bar{\psi}_{1}$.

Mapping of conserved currents

What is the meaning of $\left\langle\psi_{0}(z)\right\rangle$ in terms of loops?

$\psi_{0}(z)$ cannot sit on a closed loop

$$
\begin{gathered}
\psi_{0}=u \times \\
\Rightarrow\left\langle\psi_{0}(z)\right\rangle=\frac{u}{Z} \sum_{C \mid z \in \gamma} W(C) \times(\text { phase factor })
\end{gathered}
$$

Mapping of conserved currents (2)

Identification of phase factors

- $\theta_{b \rightarrow z}=\theta_{a \rightarrow z}+\pi, \quad q=e^{i \pi(2 \lambda-1)}$

- phase factor:

$$
\begin{array}{ccc}
\begin{array}{c}
i \lambda\left(\theta_{a \rightarrow z}+\theta_{b \rightarrow z}\right)
\end{array} & \times & q^{\frac{\theta_{a \rightarrow z}+\theta_{b \rightarrow z}-\pi}{2 \pi}}=A e^{i(4 \lambda-1) \theta_{a \rightarrow z}} \\
\uparrow & \uparrow \\
\text { turns } & T_{0} \otimes \cdots \otimes T_{0}
\end{array}
$$

$\Rightarrow \Rightarrow\left\langle\psi_{0}(z)\right\rangle=\frac{u A}{Z} \sum_{C \mid z \in \gamma} W(C) e^{i(4 \lambda-1) \theta_{a \rightarrow z}}=u A \times F_{0}(z)$

Mapping of conserved currents (3)

Cauchy-Riemann relation

- Set $u=1 / u^{\prime}=w^{1 / 2} \Rightarrow u / u^{\prime}=w=e^{-2 i \lambda \alpha}$
- Conservation relation:

$$
\begin{aligned}
& \psi_{0}\left(z_{1}\right)-\psi_{0}\left(z_{2}\right)-\psi_{0}\left(z_{3}\right)+\psi_{0}\left(z_{4}\right)=0 \\
\Rightarrow & \sum_{\diamond} F_{0}(z) \delta z=0
\end{aligned}
$$

- Conservation of BF current $\Rightarrow \mathrm{CR}_{\alpha}$ relation

Extension of the results

- What we have also obtained:
- Holo. obs. in TL corresponding to $E_{1}, \bar{E}_{0}, \bar{E}_{1}$
- Holo. obs. in dilute $\mathrm{O}(n)$ model $\rightarrow \mathcal{A}=U_{q}\left(A_{2}^{(2)}\right)$
- Boundary CR equation \leftrightarrow integrable K-matrix
- For future work:
- Construct new holo. obs. in other models
- Study non-critical cases $\rightarrow(\partial-m) F=0$?
- Find "other half" of CR equations?

Thank you for your attention!

