Testing quantum mechanics with cosmology Patrick Peter

Institut d'Astrophysique de Paris GRECO

In 3+1 expansion:
$$\mathcal{S} \equiv \int \mathrm{d}tL = \frac{1}{16\pi G_{\mathrm{N}}} \int \mathrm{d}t\mathrm{d}^3x \,\mathcal{N}\sqrt{h} \left(K_{ij}K^{ij} - K^2 + {}^3R - 2\Lambda\right) + \mathcal{S}_{\mathrm{matter}}$$

Canonical momenta

$$\pi^{ij} \equiv \frac{\delta L}{\delta \dot{h}_{ij}} = -\frac{\sqrt{h}}{16\pi G_{\rm N}} \left(K^{ij} - M_{\rm N} \right)$$

$$\pi_{\Phi} \equiv \frac{\delta L}{\delta \dot{\Phi}} = \frac{\sqrt{h}}{N} \left(\dot{\Phi} - M^{i} \frac{\partial \Phi}{\partial x^{i}} \right)$$

$$\pi^{0} \equiv \frac{\delta L}{\delta \dot{N}_{i}} = 0$$

$$\pi^{i} \equiv \frac{\delta L}{\delta \dot{N}_{i}} = 0$$
Primary co

Hamiltonian $H \equiv \int d^3x \left(\pi^0 \dot{\mathcal{N}} + \pi^i \dot{\mathcal{N}}_i + \pi^{ij} \dot{h}_{ij} + \pi_i \dot{\mathcal{N}}_i \right)$

Variation wrt lapse $\mathcal{H} = 0$ Hamiltonian constraint Variation wrt shift $\mathcal{H}^i = 0$ momentum constraint

Classical description

January 23rd 2014

 $h^{ij}K$)

onstraints

$$\left(\Phi \Phi \right) - L = \int \mathrm{d}^3 x \left(\pi^0 \dot{\mathcal{N}} + \pi^i \dot{\mathcal{N}}_i + \mathcal{N} \mathcal{H} + \mathcal{N}_i \mathcal{H}^i \right)$$

Secondary constraints

• Superspace & canonical quantisation

Relevant configuration space?

 $\operatorname{Riem}(\Sigma) \equiv \Big\{ h_i \Big\}$

 $GR \implies$ invariance / diffeomorphisms \implies

Wave functional $\Psi[h_{ij}(x), \Phi(x)]$

Dirac canonical quantisation

$$\pi^{ij} \to -i\frac{\delta}{\delta h_{ij}} \qquad \qquad \pi_{\Phi} \to -i\frac{\delta}{\delta\Phi}$$

$$\begin{array}{l} \text{matter fields} \\ \Phi(x^{\mu}), \Phi(x^{\mu}) \mid x \in \Sigma \\ \text{parameters} \\ \Rightarrow \text{Conf} = \frac{\text{Riem}(\Sigma)}{\text{Diff}_{0}(\Sigma)} \quad \text{superspace} \end{array}$$

 $\pi^0 \to -i \frac{\delta}{\delta \mathcal{N}}$

 $\pi^i \to -i \frac{\delta}{\delta \mathcal{N}_i}$

Primary constraints

$$\hat{\pi}\Psi = -i\frac{\delta\Psi}{\delta\mathcal{N}} = 0$$
$$\hat{\pi}^{i}\Psi = -i\frac{\delta\Psi}{\delta\mathcal{N}_{i}} = 0$$

Momentum constraint $\hat{\mathcal{N}}^i \Psi = 0 \implies i \nabla_i^{(h)}$

 $\implies \Psi$ is the same for configurations $\{h_{ij}(x), \Phi(x)\}$ related by a coordinate transformation

Hamiltonian constraint

$$\hat{\mathcal{H}}\Psi = \begin{bmatrix} -16\pi G_{N}\mathcal{G}_{ijkl}\frac{\delta^{2}}{\delta h_{ij}\delta h_{kl}} + \frac{\sqrt{h}}{16\pi G_{N}}\left(-{}^{^{3}}R + 2\Lambda + 16\pi G_{N}\hat{T}^{00}\right) \end{bmatrix}\Psi = 0$$

$$Wheeler - De Witt equation$$

$$\mathcal{G}_{ijkl} = \frac{1}{2}h^{-1/2}\left(h_{ik}h_{jl} + h_{il}h_{jk} - h_{ij}h_{kl}\right)$$
DeWitt metric...

$$\left(\frac{\delta\Psi}{\delta h_{ij}}\right) = 8\pi G_{\rm N} \hat{T}^{0i} \Psi$$

Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini - superspace

$$h_{ij} \mathrm{d}x^i \mathrm{d}x^j = a^2(t) \left[\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2 \right) \right] \qquad \Phi(x) = \phi(t)$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Conceptual and technical problems:

Infinite number of dof \rightarrow a few: mathematical consistency? Freeze momenta? Heisenberg uncertainties? QM = minisuperspace of QFT

• Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini - superspace

$$h_{ij} \mathrm{d}x^i \mathrm{d}x^j = a^2(t) \left[\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2 \right) \right] \qquad \Phi(x) = \phi(t)$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

However, one can actually make calculations!

Exemple : Quantum cosmology of a perfect fluid

$$ds^{2} = N^{2}(\tau)d\tau - a^{2}(\tau)\gamma_{ij}dx^{i}dx^{j}$$

rmalism ('70)
$$p = p_{0}\left[\frac{\dot{\varphi} + \theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}}$$
$$(\varphi, \theta, s) = \text{Velocity potentials}$$

Perfect fluid: Schutz for

canonical transformation: $T = -p_s e^{-s/s_0} p_{\varphi}^-$ + rescaling (volume...) + units...: simple Hamiltonian: 1 2 \mathbf{N}

$$H = \left(-\frac{p_a^2}{4a} - \mathcal{K}a + \frac{p_T}{a^{3\omega}}\right)N$$

January 23rd 2014

$$s^{(1+\omega)}s_0
ho_0^{-\omega}$$
 ..

 \bullet

Wheeler-De Witt

$$\mathcal{K} = 0 \Longrightarrow \chi \equiv \frac{2a^{3(1-\omega)/2}}{3(1-\omega)} \Longrightarrow i\frac{\partial\Psi}{\partial T} = \frac{1}{4}\frac{\partial^2\Psi}{\partial\chi^2}$$

space defined by
$$\chi > 0 \longrightarrow$$
 constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi} = \Psi \frac{\partial \Psi}{\partial \chi}$

Gaussian wave packet

$$= \left[\frac{8T_0}{\pi \left(T_0^2 + T^2\right)^2} \right]^{\frac{1}{4}} \exp\left(-\frac{T_0\chi^2}{T_0^2 + T^2}\right) e^{-iS(\chi,T)}$$
phase $S = \frac{T\chi^2}{T_0^2 + T^2} + \frac{1}{2} \arctan\frac{T_0}{T} - \frac{\pi}{4}$

January 23rd 2014

 $H\Psi=0$

What do we do with the wave function of the Universe???

Quantum mechanics of closed systems

Physical system = Hilbert space of configurations State vectors Observables = self-adjoint operators Measurement = eigenvalue

Evolution = Schrödinger equation (time translat

Born rule
$$\operatorname{Prob}[a_n; t] = |\langle a_n | \psi(t) \rangle|^2$$

Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $|a_n\rangle$ after

Schrödinger equation = linear (superposition principle) / unitary evolution

Wavepacket reduction = non linear / stochastic

perators

$$A|a_n\rangle = a_n|a_n\rangle$$

tion invariance) $i\hbar \frac{d}{dt}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$
Hamiltonian

• Possible solutions and a criterion: the Born rule

- Superselection rules
- Modal interpretation
- **Consistent** histories
- Many worlds / many minds
- ▲ Hidden variables
- ▲ Modified Schrödinger dynamics

January 23rd 2014

A. Bassi and G.C. Ghirardi, *Phys. Rep.* **379**, 257 (2003)

Born rule not put by hand!

Ontological *formulation* (dBB)

Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

David Bohm (Communist)

Hidden Variable Theories

Schrödinger
$$i\frac{\partial\Psi}{\partial t} = \left[-\frac{\nabla^2}{2m} + V\right]$$

Polar form of the wave function Ψ

Hamilton-Jacobi

qua pote

$$(\boldsymbol{r})
ight] \Psi$$

$$= A\left(\boldsymbol{r}, t\right) \mathrm{e}^{iS(\boldsymbol{r}, t)}$$

$$\frac{1}{2} + V(\mathbf{r}) + Q(\mathbf{r}, t) = 0$$

$$\frac{\mathbf{ntum}}{\mathbf{ntial}} = \frac{1}{2m} \frac{\nabla^2 A}{A}$$

Ontological *formulation* (BdB)

Trajectories satisfy (Bohm)

Ontological formulation (dBB) $\exists x(t)$

Trajectories satisfy (de Broglie)

Properties:

- strictly equivalent to Copenhagen QM •• probability distribution (attractor) $\exists t_0; \rho(\boldsymbol{x}, t_0) = |\Psi(\boldsymbol{x}, t_0)|^2$
- classical limit well defined $Q \longrightarrow 0$ ••
- state dependent ••
- intrinsic reality
 - non local ...
- no need for external classical domain/observer! ••

$$\Psi = A\left(\boldsymbol{r}, t\right) \mathrm{e}^{iS(\boldsymbol{r}, t)}$$

- $m\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \Im m \frac{\Psi^* \boldsymbol{\nabla} \Psi}{|\Psi(\boldsymbol{x},t)|^2} = -\boldsymbol{\nabla} S$

The two-slit experiment:

January 23rd 2014

Surrealistic trajectories?

Non straight in vacuum... $m\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = -\nabla \left(X + Q \right)$

Back to the QC wave function

Hidden trajectory

$$\left(-\frac{T_0\chi^2}{T_0^2 + T^2}\right) e^{-iS(\chi,T)}$$

$$\arctan\frac{T_0}{T} - \frac{\pi}{4}$$

$$a = a_0 \left[1 + \left(\frac{T}{T_0}\right)^2 \right]^{\frac{1}{3(1-\omega)}}$$

J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal,, Phys. Lett. A241, 229 (1998)

J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal,, Phys. Lett. A241, 229 (1998)

What about perturbations?

Superposition

Superposition

Collapse in 1992 ???

Superposition

Collapse in 1992 ???

Further collapse in 2003 on smaller scales???

Superposition Final (ultimate!) collapse in 2012?

Collapse in 1992 ???

• Both background and perturbations are quantum Usual treatment of the perturbations?

Einstein-Hilbert action up to 2nd order

Bardeen (Newton) gravitational potential $ds^{2} = a^{2}(\eta) \left\{ (1+2\Phi) d\eta^{2} - [(1+2\Phi)) d\eta^{2} - [(1+2\Phi)] d\eta^{2} - [(1+2\Phi)]$

conformal time $d\eta = a(t)^{-1} dt$

$$\int \mathrm{d}^4 x \,\delta^{(2)} \mathcal{L} = \frac{1}{2} \int \sqrt{\gamma} \mathrm{d}^3 \boldsymbol{x} \,\mathrm{d}\eta \,\left[(\partial_\eta v)^2 - \gamma^{ij} \partial_i v \right]$$

 $z = z[a(\eta)]$ Simple scalar field with varying mass in Minkowski space!!!

January 23rd 2014

$$1 - 2\Phi)\gamma_{ij} + h_{ij}]\,\mathrm{d}x^i\mathrm{d}x^j\big\}$$

V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, *Phys. Rep.* 215, 203 (1992)

Self-consistent treatment of the perturbations?

Hamiltonian up to 2nd order $H = H_{(0)} + H_{(2)} + \cdots$

$$\Delta \Phi = -\frac{3\ell_{\rm Pl}^2}{2}\sqrt{\frac{\rho}{2}}$$

factorization of the wave function

 $\Psi = \Psi_{(0)}(a, T) \Psi_{(2)}[v, T; a(T)]$

comes from 0th order

January 23rd 2014

Use dBB or...

		interfering object	m/m_p	Τ	d	in GRW $\lambda <$	in GRW $\lambda/\sigma^2 <$	in CSL $\lambda <$	in CSL $\lambda/\sigma^2 <$	
1927	Davisson [13]	electron	5×10^{-4}	N/A	$2 \times 10^{-10} m$	$10^{14} \mathrm{s}^{-1}$	$3 \times 10^{33} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$10^{17} \ {\rm s}^{-1}$	$5 \times 10^{36} \text{ m}^{-2} \text{s}^{-1}$	
1930	Estermann [15]	He	4	N/A	$4 \times 10^{-10} {\rm m}$	$10^{11} \mathrm{s}^{-1}$	$6 \times 10^{29} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$3 \times 10^{10} \text{ s}^{-1}$	$10^{29} \text{ m}^{-2} \text{s}^{-1}$	
1959	Möllenstedt [28]	electron	5×10^{-4}	$3 \times 10^{-9} \mathrm{s}$	2×10^{-6} m	$7 \times 10^{11} \mathrm{s}^{-1}$	$10^{23} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$10^{15} {\rm s}^{-1}$	$3 \times 10^{26} \text{ m}^{-2} \text{s}^{-1}$	
1987 ′	Tonomura [37]	electron	5×10^{-4}	$10^{-8} {\rm s}$	10 ⁻⁴ m	$2 \times 10^{11} \mathrm{s}^{-1}$	$2 \times 10^{19} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$4 \times 10^{14} \text{ s}^{-1}$	$4 \times 10^{22} \text{ m}^{-2} \text{s}^{-1}$	
1988	Zeilinger [40]	neutron	1	$10^{-2}{ m s}$	$10^{-4} {\rm m}$	$2 \times 10^2 \mathrm{s}^{-1}$	$2 \times 10^{10} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$2 \times 10^2 \mathrm{s}^{-1}$	$2 \times 10^{10} \text{ m}^{-2} \text{s}^{-1}$	
1991	Carnal [9]	He	4	$6 \times 10^{-4} \mathrm{s}$	$10^{-5} {\rm m}$	$4 \times 10^2 \ {\rm s}^{-1}$	$4 \times 10^{12} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$10^2 {\rm s}^{-1}$	$10^{12} \text{ m}^{-2} \text{s}^{-1}$	
1999 .	Arndt $[4]$	C_{60}	720	6×10^{-3} s	$10^{-7} { m m}$	$2 \times 10^{-1} \mathrm{s}^{-1}$	$2 \times 10^{13} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$3 \times 10^{-4} \text{ s}^{-1}$	$3 \times 10^{10} \text{ m}^{-2} \text{s}^{-1}$	
2001	Nairz [29]	C_{70}	840	$10^{-2} { m s}$	$3 \times 10^{-7} {\rm m}$	$10^{-1} \mathrm{s}^{-1}$	$10^{12} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$10^{-4} \mathrm{s}^{-1}$	$10^9 \text{ m}^{-2} \text{s}^{-1}$	
2004	Hackermüller [24]	C_{70}	840	$2 \times 10^{-3} \mathrm{s}$	$10^{-6} {\rm m}$	$10^0 \mathrm{s}^{-1}$	$10^{12} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$10^{-3} \mathrm{s}^{-1}$	$10^9 \text{ m}^{-2} \text{s}^{-1}$	
2007	Gerlich [17]	$C_{30}H_{12}F_{30}N_2O_4$	10^{3}	10^{-3} s	3×10^{-7} m	$10^{0} \mathrm{s}^{-1}$	$10^{13} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$10^{-3} \mathrm{s}^{-1}$	$10^{10} \text{ m}^{-2} \text{s}^{-1}$	
2011	Gerlich [18]	$C_{60}[C_{12}F_{25}]_{10}$	$7 imes 10^3$	$10^{-3}\mathrm{s}$	$3 \times 10^{-7} \text{ pr}$	$10^{-1} \mathrm{s}^{-1}$	$10^{12} \mathrm{m}^{-2} \mathrm{s}^{-1}$	$10^{-5} \ {\rm s}^{-1}$	$10^8 \text{ m}^{-2} \text{s}^{-1}$	
	Proposed future experiments									
-	Romero-Isart [35]	$[SiO_2]_{150,000}$	107	$10^{-1} { m s}$	$4 \times 10^{-7} {\rm m}$	$10^{-6} \mathrm{s}^{-1}$	$6 \times 10^{6} \text{ m}^{-2} \text{s}^{-1}$	$10^{-13} \mathrm{s}^{-1}$	$6 \times 10^{-1} \mathrm{m}^{-2} \mathrm{s}^{-1}$	
-	Nimmrichter [30]	$Au_{500,000}$	10^{8}	6×10^{0} s	$10^{-7} {\rm m}$	$2 \times 10^{-9} \mathrm{s}^{-1}$	$2 \times 10^5 \text{ m}^{-2} \text{s}^{-1}$	$2 \times 10^{-17} \mathrm{s}^{-1}$	$2 \times 10^{-3} \mathrm{m}^{-2} \mathrm{s}^{-1}$	

Table 1: Bounds on σ , λ obtained from different diffraction experiments. For each experiment, m = mass of the interfering object, $m_p =$ proton mass, $\tau =$ time of flight between grating and image plane, d = period of grating (or transverse coherence length in [37]), N/A = not applicable. For each theory (GRW or CSL), two bounds are obtained. This table is the basis for Fig. 3.

Feldmann & Tumulka (2011)

Spontaneous collapse amplification mechanism

January 23rd 2014

Animations provided by V. Vennin... thx!

Constraints: (falsifiable theory!)

- Atomic energy levels
- Nuclear energy levels
- **Diffraction Experiments**
- **Proton Decay**
- Spontaneous Xray emission
- Spontaneous IGM warming
- Dissociation of cosmic H
- Decay of supercurrents
- Latent image formation
- Thermalized spectral distorsions \bullet
- Neutrino and kaon oscillations

Constraints: (falsifiable theory!)

Cosmological perturbations: different test by orders of magnitude!

Classicalization of Cosmological Perturbations

Predictions of the theory:

Usually in a lab: repeat the experiment

Here one has a single experiment (a single universe)

January 23rd 2014

Calculated by quantum average $\langle \Psi | \hat{O} | \Psi angle$

Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations promoted to quantum operators

$$\frac{\widehat{\Delta T}}{T} \propto \hat{v} \qquad \text{vari}$$

+ Fourier transform $v(\eta, \boldsymbol{x}) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} d^3 \boldsymbol{k} \, v_{\boldsymbol{k}}(\eta) e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$ $^{(2)}\delta S = \int d\eta \int d^3 \mathbf{k} \left\{ v'_{\mathbf{k}} v^{*'}_{\mathbf{k}} \right\}$

January 23rd 2014

able-mass scalar fields in Minkowski spacetime

$$' + v_{\boldsymbol{k}} v_{\boldsymbol{k}}^* \left[\frac{\left(a \sqrt{\epsilon_1} \right)''}{a \sqrt{\epsilon_1}} - k^2 \right] \right\}$$

Hamiltonian

$$H = \int \mathrm{d}^{3}\boldsymbol{k} \left\{ p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*} + v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*} \left[k^{2} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

factorization of the full wave function $\Psi\left[v(\eta, \boldsymbol{x})\right] = \prod \Psi_{\boldsymbol{k}}\left(v_{\boldsymbol{k}}^{\mathrm{R}}, v_{\boldsymbol{k}}^{\mathrm{I}}\right) = \prod \Psi_{\boldsymbol{k}}^{\mathrm{R}}\left(v_{\boldsymbol{k}}^{\mathrm{R}}\right)\Psi_{\boldsymbol{k}}^{\mathrm{I}}\left(v_{\boldsymbol{k}}^{\mathrm{I}}\right)$ $i\frac{\Psi_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}}{\partial\eta} = \hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}\Psi_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}$ $\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R,I}} = -\frac{1}{2} \frac{\partial^2}{\partial \left(v_{\boldsymbol{k}}^{\mathrm{R,I}}\right)^2} + \frac{1}{2} \omega^2(\eta, \boldsymbol{k}) \left(\hat{v}_{\boldsymbol{k}}^{\mathrm{R,I}}\right)^2$

 $\omega^{2}\left(\eta,oldsymbol{k}
ight)$ $-\frac{(a\sqrt{\epsilon_1})}{a\sqrt{\epsilon_1}}$

- real and imaginary parts

Gaussian state solution $\Psi(\eta, v_k) = \left[\frac{2\Re e \,\Omega_k(\eta)}{\pi}\right]^{1/2}$

Wigner function $W(v_{k}, p_{k}) = \int \frac{\mathrm{d}x}{2\pi^{2}} \Psi^{*} \left(v_{k} - \frac{x}{2}\right)$

Animations provided by V. Vennin... thx!

$$/4 e^{-\Omega_{\boldsymbol{k}}(\eta)v_{\boldsymbol{k}}^2}$$

$$\left(v_{\mathbf{k}} + \frac{x}{2} \right) e^{-ip_{\mathbf{k}}x} \Psi \left(v_{\mathbf{k}} + \frac{x}{2} \right)$$

Primordial Power Spectrum Standard case

Quantization in the Schrödinger picture (functional representation)

with
$$\hat{\mathcal{H}}_{\pmb{k}} = \frac{\hat{p}_{\pmb{k}}^2}{2} + \omega^2(\pmb{k},\eta)\hat{v}_{\pmb{k}}^2$$

and
$$\omega^2(\mathbf{k},\eta) = k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}}$$

$$=k^2 - \frac{\beta(\beta+1)}{\eta^2}$$

Parametric Oscillator System

January 23rd 2014

 $i\frac{\mathrm{d}|\Psi_{\boldsymbol{k}}\rangle}{\mathrm{d}\eta} = \hat{\mathcal{H}}_{\boldsymbol{k}}|\Psi_{\boldsymbol{k}}\rangle \quad \text{Power-law inflation example}$ $\hat{v}_{k} = v_{k}$ $\hat{p}_{k} = i \frac{\partial}{\partial v_{k}}$ $a(\eta) = \ell_0(-\eta)^{1+\beta}$ $\beta \leq -2$ (de Sitter: $\beta = -2$)

Primordial Power Spectrum Standard case

Quantization in the Schrödinger picture (functional representation)

 $\Psi_{\pmb{k}}(\eta, v_{\pmb{k}}) =$

 $i\frac{\mathrm{d}|\Psi_{\boldsymbol{k}}\rangle}{\mathrm{d}\eta} = \hat{\mathcal{H}}_{\boldsymbol{k}} |\Psi_{\boldsymbol{k}}\rangle$ with

$$\Omega_{\mathbf{k}}' = -2i\Omega_{\mathbf{k}}^{2} + \frac{i}{2}\omega^{2}(\eta, \mathbf{k})$$
$$\Omega_{\mathbf{k}} = -\frac{i}{2}\frac{f_{\mathbf{k}}'}{f_{\mathbf{k}}}$$
$$f_{\mathbf{k}}''$$

$$\left[\frac{2 \Re e \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1/4} e^{-\Omega_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}^2}$$

$$\hat{\mathcal{H}}_{\boldsymbol{k}} = \frac{\hat{p}_{\boldsymbol{k}}^2}{2} + \omega^2(\boldsymbol{k},\eta)\hat{v}_{\boldsymbol{k}}^2$$

$$+\omega^2(\boldsymbol{k},\eta)f_{\boldsymbol{k}}=0$$

Primordial Power Spectrum Standard case

Evaluated at the end of inflation($k\eta \rightarrow 0^-$), this

and eventually
$$P_{\zeta}(k) = \frac{1}{2a^2 M_{\rm Pl}^2 \epsilon_1} P_v(k) = A_S$$

with
$$n_{\rm S} = 2\beta + 5 \underset{\beta \sim -2}{\simeq} 1$$

Planck: $1 - n_{\rm s} = 0.0389 \pm 0.0054$

gives
$$P_v(k) = \frac{k^3}{2\pi^3} \left(\langle \hat{v}_k^2 \rangle - \langle \hat{v}_k \rangle^2 \right)$$

Primordial Power Spectrum Modified Theory

Modified Schrödinger equation

$$\mathrm{d}|\Psi_{\boldsymbol{k}}\rangle = -i\hat{\mathcal{H}}_{\boldsymbol{k}}|\Psi\rangle\mathrm{d}\eta + \sqrt{\gamma}\Big(\hat{v}_{\boldsymbol{k}} - \langle\hat{v}_{\boldsymbol{k}}\rangle\Big)\mathrm{d}W_{\eta}|\Psi_{\boldsymbol{k}}\rangle - \frac{\gamma}{2}\Big(\hat{v}_{\boldsymbol{k}} - \langle\hat{v}_{\boldsymbol{k}}\rangle\Big)^{2}\mathrm{d}\eta\,|\Psi_{\boldsymbol{k}}\rangle$$

Extended Gaussian wave function

$$\Psi_{\boldsymbol{k}}\left(\eta, v_{\boldsymbol{k}}\right) = \left[\frac{2 \Re e \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1/4} \exp\left\{-\Re e \Omega_{\boldsymbol{k}}\left(\eta\right) \left[v_{\boldsymbol{k}} - \bar{v}_{\boldsymbol{k}}\left(\eta\right)\right]^{2} + i\sigma_{\boldsymbol{k}}(\eta) + i\chi_{\boldsymbol{k}}(\eta)v_{\boldsymbol{k}} - i\Im m\Omega_{\boldsymbol{k}}(\eta)\left(v_{\boldsymbol{k}}\right)^{2}\right\}$$

Modified equation of motion

$$\Omega_{\boldsymbol{k}} = -\frac{i}{2} \frac{f_{\boldsymbol{k}}'}{f_{\boldsymbol{k}}}$$

January 23rd 2014

$$\Omega_{\boldsymbol{k}}' = -2i\Omega_{\boldsymbol{k}}^2 + \frac{i}{2}\omega^2(\eta, \boldsymbol{k}) + \boldsymbol{\gamma}$$

$f_{\mathbf{k}}'' + \left[\omega^2(\eta, k) - 2i\gamma\right] f_{\mathbf{k}} = 0$

Primordial Power Spectrum Modified Theory

$$f_{\mathbf{k}}^{\prime\prime} + \left[k^2 - \frac{\beta(\beta+1)}{\eta^2} - 2i\gamma\right]f_{\mathbf{k}} = 0$$

Primordial Power Spectrum Modified Theory

Conclusions (1)

Quantum measurement problem very severe in cosmology

Two possible extensions of QM can be used (Born rule not set by hand)

January 23rd 2014

Test? (non equilibrium...)

Constraint on γ

- collapse time - final spread