Tutsting quantum methanirs mitifichamolngy

Patrick Peter

Institut dPAstrophysique de Paris
GR\&CO

CMS

Quantum cosmology

- Hamiltonian GR

Action: $\quad \mathcal{S}=\frac{1}{16 \pi G_{\mathrm{N}}}\left[\int_{\mathcal{M}} \mathrm{d}^{4} x \sqrt{-g}\left({ }^{4} R-2 \Lambda\right)+2 \int_{\partial \mathcal{M}} \mathrm{d}^{3} x \sqrt{h} K^{i}{ }_{i}\right]+\mathcal{S}_{\text {matter }}$

In 3+1 expansion: $\mathcal{S} \equiv \int \mathrm{d} t L=\frac{1}{16 \pi G_{\mathrm{N}}} \int \mathrm{d} t \mathrm{~d}^{3} x \mathcal{N} \sqrt{h}\left(K_{i j} K^{i j}-K^{2}+{ }^{3} R-2 \Lambda\right)+\mathcal{S}_{\text {matter }}$
Canonical momenta $\quad \pi^{i j} \equiv \frac{\delta L}{\delta \dot{h}_{i j}}=-\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(K^{i j}-h^{i j} K\right)$

$$
\left.\begin{array}{l}
\pi_{\Phi} \equiv \frac{\delta L}{\delta \dot{\Phi}}=\frac{\sqrt{h}}{\mathcal{N}}\left(\dot{\Phi}-\mathcal{N}^{i} \frac{\partial \Phi}{\partial x^{i}}\right) \\
\pi^{0} \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}}=0 \\
\pi^{i} \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}_{i}}=0
\end{array}\right\} \text { Primary constraints }
$$

Hamiltonian $H \equiv \int \mathrm{~d}^{3} x\left(\pi^{0} \dot{\mathcal{N}}+\pi^{i} \dot{\mathcal{N}}_{i}+\pi^{i j} \dot{h}_{i j}+\pi_{\Phi} \dot{\Phi}\right)-L=\int \mathrm{d}^{3} x\left(\pi^{0} \dot{\mathcal{N}}+\pi^{i} \dot{\mathcal{N}}_{i}+\mathcal{N} \mathcal{H}+\mathcal{N}_{i} \mathcal{H}^{i}\right)$

Variation wrt lapse $\mathcal{H}=0$ Hamiltonian constraint
Variation wrt shift $\mathcal{H}^{i}=0$ momentum constraint
Secondary constraints
\Longrightarrow Classical description

- Superspace \& canonical quantisation

Relevant configuration space?

$$
\operatorname{Riem}(\Sigma) \equiv\left\{h_{i j}\left(x^{\mu}\right), \stackrel{\square}{\left.\Phi\left(x^{\mu}\right) \mid x \in \Sigma\right\}} \begin{array}{c}
\text { matter fields } \\
\\
\text { parameters }
\end{array}\right.
$$

GR \Longrightarrow invariance $/$ diffeomorphisms $\Longrightarrow \operatorname{Conf}=\frac{\operatorname{Riem}(\Sigma)}{\operatorname{Diff}_{0}(\Sigma)}$
superspace

Wave functional $\Psi\left[h_{i j}(x), \Phi(x)\right]$
Dirac canonical quantisation
$\pi^{i j} \rightarrow-i \frac{\delta}{\delta h_{i j}}$
$\pi_{\Phi} \rightarrow-i \frac{\delta}{\delta \Phi}$
$\pi^{0} \rightarrow-i \frac{\delta}{\delta \mathcal{N}}$

$$
\pi^{i} \rightarrow-i \frac{\delta}{\delta \mathcal{N}_{i}}
$$

$$
\hat{\pi} \Psi=-i \frac{\delta \Psi}{\delta \mathcal{N}}=0
$$

Primary constraints

$$
\hat{\pi}^{i} \Psi=-i \frac{\delta \Psi}{\delta \mathcal{N}_{i}}=0
$$

Momentum constraint $\quad \hat{\mathcal{N}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{T}^{0 i} \Psi$
$\Longrightarrow \Psi$ is the same for configurations $\left\{h_{i j}(x), \Phi(x)\right\}$ related by a coordinate transformation

Hamiltonian constraint

$$
\underbrace{\mathcal{G}_{i j k l}=\frac{1}{2} h^{-1 / 2}\left(h_{i k} h_{j l}+h_{i l} h_{j k}-h_{i j} h_{k l}\right)}_{\sqrt{\hat{\mathcal{H}} \Psi=\left[-16 \pi G_{\mathrm{N}} \mathcal{G}_{i j k l} \frac{\delta^{2}}{\delta h_{i j} \delta h_{k l}}+\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(-^{3} R+2 \Lambda+16 \pi G_{\mathrm{N}} \hat{T}^{00}\right)\right] \Psi=0} \text { Wheeler - De Witt equation }}
$$

DeWitt metric...

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini - superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Conceptual and technical problems:
Infinite number of dof \longrightarrow a few: mathematical consistency?
Freeze momenta? Heisenberg uncertainties?
$\mathrm{QM}=$ minisuperspace of QFT

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini - superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

However, one can actually make calculations!

Exemple : Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Perfect fluid: Schutz formalism ('70)

$$
p=p_{0}\left[\frac{\dot{\varphi}+\theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}}
$$

$(\varphi, \theta, s)=$ Velocity potentials
canonical transformation: $\quad T=-p_{s} \mathrm{e}^{-s / s_{0}} p_{\varphi}^{-(1+\omega)} s_{0} \rho_{0}^{-\omega} \quad \ldots$

+ rescaling (volume...) + units... : simple Hamiltonian:

$$
H=\left(-\frac{p_{a}^{2}}{4 a}-\mathcal{K} a+\frac{p_{T}}{a^{3 \omega}}\right) N
$$

Wheeler-De Witt

$$
H \Psi=0
$$

$$
\mathcal{K}=0 \Longrightarrow \chi \equiv \frac{2 a^{3(1-\omega) / 2}}{3(1-\omega)} \Longrightarrow i \frac{\partial \Psi}{\partial T}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial \chi^{2}}
$$

space defined by $\chi>0 \longrightarrow$ constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi}=\Psi \frac{\partial \bar{\Psi}}{\partial \chi}$

Gaussian wave packet

$$
\begin{gathered}
\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
\text { phase } \quad S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4}
\end{gathered}
$$

What do we do with the wave function of the Universe???

Quantum mechanics of closed systems

Physical system $=$ Hilbert space of configurations

State vectors

Observables $=$ self-adjoint operators
Measurement $=$ eigenvalue $\quad A\left|a_{n}\right\rangle=a_{n}\left|a_{n}\right\rangle$
Evolution = Schrödinger equation (time translation invariance) $\begin{gathered}i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \\ \text { Hamiltonian }\end{gathered}$
Born rule Prob $\left[a_{n} ; t\right]=\left|\left\langle a_{n} \mid \psi(t)\right\rangle\right|^{2}$
Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $\left|a_{n}\right\rangle$ after

Schrödinger equation = linear (superposition principle) / unitary evolution
Wavepacket reduction $=$ non linear $/$ stochastic

Mutually incompatible

- Possible solutions and a criterion: the Born rule
- Superselection rules
- Modal interpretation
- Consistent histories
- Many worlds / many minds

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
- Hidden variables
- Modified Schrödinger dynamics

Born rule not put by hand!

Ontological formulation (dBB)

Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... ‘In 1952, I saw the impossible done’ (J. Bell)

Hidden Variable Theories

Schrödinger $\quad i \frac{\partial \Psi}{\partial t}=\left[-\frac{\nabla^{2}}{2 m}+V(\boldsymbol{r})\right] \Psi$

Polar form of the wave function $\quad \Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}$

Hamilton-Jacobi

$$
\frac{\partial S}{\partial t}+\frac{(\nabla S)^{2}}{2 m}+V(\boldsymbol{r})+Q(\boldsymbol{r}, t)=0
$$

$$
\underset{\text { potential }}{\underset{\text { quantum }}{ } \equiv-\frac{1}{2 m} \frac{\nabla^{2} A}{A}}
$$

Ontological formulation (BdB) $\quad \exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

Trajectories satisfy (Bohm)

$$
m \frac{\mathrm{~d}^{2} \boldsymbol{x}}{\mathrm{~d} t^{2}}=-\nabla(V+Q) \quad Q \equiv-\frac{1}{2 m} \frac{\nabla^{2}|\Psi|}{|\Psi|}
$$

Ontological formulation (dBB) $\exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im \mathrm{m} \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=-\nabla S$
(2) strictly equivalent to Copenhagen QM

- probability distribution (attractor)

Properties:

$$
\exists t_{0} ; \rho\left(x, t_{0}\right)=\left|\Psi\left(x, t_{0}\right)\right|^{2}
$$

© classical limit well defined
© state dependent
© \exists intrinsic reality non local ...
© no need for external classical domain/observer!

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...
$m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(\boldsymbol{X}+Q)$

Back to the QC wave function

Gaussian wave packet

$$
\begin{aligned}
& \square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
& \text { phase } \quad S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4} \\
& \text { Hidden trajectory } \quad a=a_{0}\left[1+\left(\frac{T}{T_{0}}\right)^{2}\right]^{\frac{1}{3(1-\omega)}}
\end{aligned}
$$

What about perturbations?

Superposition

Collapse in 1992 ???

Superposition
Collapse in 1992 ???

Final (ultimate!) collapse in 2012?

- Both background and perturbations are quantum

Usual treatment of the perturbations?
Einstein-Hilbert action up to $2^{\text {nd }}$ order

$$
\left.\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}\right\rangle+\delta^{(2)} R\right]
$$

Classical Quantum

Bardeen (Newton) gravitational potential

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

conformal time

$$
\mathrm{d} \eta=a(t)^{-1} \mathrm{~d} t \quad \Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}
$$

$$
\int \mathrm{d}^{4} x \delta^{(2)} \mathcal{L}=\frac{1}{2} \int \sqrt{\gamma} \mathrm{~d}^{3} \boldsymbol{x} \mathrm{~d} \eta\left[\left(\partial_{\eta} v\right)^{2}-\gamma^{i j} \partial_{i} v \partial_{j} v+\frac{z^{\prime \prime}}{z} v^{2}\right]
$$

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!!

$$
z=z[a(\eta)]
$$

Self-consistent treatment of the perturbations?
Hamiltonian up to $2^{\text {nd }}$ order $\quad H=H_{(0)}+H_{(2)}+\cdots$

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

factorization of the wave function

Use dBB or...

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian

$$
\langle\hat{C}\rangle \equiv\langle\Psi| \hat{C}|\Psi\rangle \quad \underset{\mathbb{E}\left(\mathrm{d} W_{t}\right)=0}{\text { non linear stochastic }} \longrightarrow \text { random outcomes }
$$

break superposition principle $\quad \mathbb{E}\left(\mathrm{d} W_{t} \mathrm{~d} W_{t^{\prime}}\right)=\mathrm{d} t \mathrm{~d} t^{\prime} \delta\left(t-t^{\prime}\right)$

BONUS: Amplification mechanism

Year	first author [ref.]	interfering object	m / m_{p}	τ	d	$\begin{gathered} \text { in GRW } \\ \lambda< \end{gathered}$	$\begin{aligned} & \text { in GRW } \\ & \lambda / \sigma^{2}< \end{aligned}$		$\begin{aligned} & \text { in CSL } \\ & \lambda / \sigma^{2}< \end{aligned}$
1927	Davisson [13]	electron	5×10^{-4}	N/A	$2 \times 10^{-10} \mathrm{~m}$	$10^{14} \mathrm{~s}^{-1}$	$3 \times 10^{33} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{17} \mathrm{~s}^{-1}$	$5 \times 10^{36} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1930	Estermann [15]	He	4	N/A	$4 \times 10^{-10} \mathrm{~m}$	$10^{11} \mathrm{~s}^{-1}$	$6 \times 10^{29} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \quad 3 \times 10^{10} \mathrm{~s}^{-1}$		$10^{29} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1959	Möllenstedt [28]	electron	5×10^{-4}	$3 \times 10^{-9} \mathrm{~S}$	$2 \times 10^{-6} \mathrm{~m}$	$7 \times 10^{11} \mathrm{~s}$	$10^{23} \mathrm{~m}-2 / \mathrm{s}^{-1}$	10^{15} s-	$3 \times 10^{26} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1987	Tonomura [37]	electron	5×10^{-4}	$10^{-8} \mathrm{~S}$	10.4 m	$2 \times 10^{1 / \mathrm{s}^{-1}}$	$2 \times 10^{19} / \mathrm{m}^{-2} \mathrm{~S}^{-1}$	$1010^{14} \mathrm{~s}^{-1}$	$4 \times 10^{22} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$
1988	Zeilinger [40]	neutron	1	$10^{-2} \mathrm{~s}$	$10^{-4} \mathrm{~m}$	$10^{2} \mathrm{~s}^{-1}$	$10^{10} \mathrm{~m}^{-2} \mathrm{~s}-$	$2 \times 10^{2} \quad \mathrm{~s}^{-1}$	$2 \times 10^{10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1991	Carnal [9]	He	4	$6 \times 10^{-4} \mathrm{~s}$	$10^{-5} \mathrm{~m}$	$\times 10^{2} \mathrm{~s}^{-1}$	$\times 10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{2} \mathrm{~s}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1999	Arndt [4]	C_{60}	720	6×10^{-3}	$10^{-7} / \mathrm{m}$	$2 \times 10^{-1 / s^{-1}}$	$2 \times 1 / 0^{13} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$3 \times 10^{-4} \mathrm{~s}^{-1}$	$3 \times 10^{10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2001	Nairz [29]	C_{70}	840	10.2 s	$3 \times 15^{-7} \mathrm{~m}$	$10^{-1} \mathrm{~S}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-4} \mathrm{~s}^{-1}$	$10^{9} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2004	Hackermüller [24]	C_{70}	840	$2 \times 10^{-3} \mathrm{~S}$	$10^{-6} \mathrm{~m}$	10	$10^{12} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$	$10^{-3} \mathrm{~s}^{-1}$	$10^{9} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2007	Gerlich [17]	$\mathrm{C}_{30} \mathrm{H}_{12} \mathrm{~F}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$	10^{3}	10^{-3}	3×10^{-7}	s^{-}	$10^{13} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-3} \mathrm{~s}^{-1}$	$10^{10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2011	Gerlich [18]	$\mathrm{C}_{60}\left[\mathrm{C}_{12} \mathrm{~F}_{25}\right]_{10}$	7×10^{3}	10^{-3}	$\times 10^{-7}$	$10^{-1} \mathrm{~s}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-5} \mathrm{~s}^{-1}$	$10^{8} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
Proposed future experiments									
	Romero-Isart [35]	$\left[\mathrm{SiO}_{2}\right]_{150,000}$	$7 \underset{10^{7}}{ }$	$10-1$	$4 \times 10^{-7} \mathrm{~m}$	$10^{-6} \mathrm{~S}^{-1}$	$6 \times 10^{6} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-13} \mathrm{~s}^{-1}$	$6 \times 10^{-1} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
	Nimmrichter [30]	$\mathrm{Au}_{500,000}$	10	10^{0}	$10^{-7} \mathrm{~m}$	$2 \times 10^{-9} \mathrm{~S}^{-1}$	$2 \times 10^{5} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$2 \times 10^{-17} \mathrm{~S}^{-1}$	$2 \times 10^{-3} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$

Table 1: Bounds on σ, λ obtainer frpm diif rent diffraction experiments. For each experiment, $m=$ mass of the interfering object, $m_{p}=$ proton mass, $\tau=$ /1me pr gight between grating and image plane, $d=$ period of grating (or transverse coherence length in [37]), N/A = not applichile. For each theory (GRW or CSL), two bounds are obtained. This table is the basis for Fig. 3.

Feldmann \& Tumulka (2011)

constrained...

Spontaneous collapse amplification mechanism

N identical particles

$$
\begin{gathered}
\text { collapse operator: } \hat{C}=\sum_{i=1}^{N} \hat{x}_{i} \text { acting on }\left|\Psi\left(\left\{x_{i}\right\}\right)\right\rangle=\left|\Psi_{\mathrm{CM}}(R)\right\rangle \otimes\left|\Psi_{\text {rel }}\left(\left\{r_{i}\right\}\right)\right\rangle \\
\mathrm{d}\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle=\left\{\left[-i \hat{H}_{\mathrm{rel}}-\frac{\gamma}{2} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right)^{2}\right] \mathrm{d} t+\sqrt{\gamma} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right) \mathrm{d} W_{t}^{(i)}\right\}\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle \\
\underbrace{\Longrightarrow}_{\begin{array}{c}
\text { usual quantum } \\
\text { behavior }
\end{array}}
\end{gathered}
$$

$$
\mathrm{d}\left|\Psi_{\mathrm{CM}}(R)\right\rangle=\left\{\left[-i \hat{H}_{\mathrm{CM}}-\frac{N \gamma}{2}(\hat{R}-\langle\hat{R}\rangle)^{2}\right] \mathrm{d} t+\sqrt{N \gamma}(\hat{R}-\langle\hat{R}\rangle) \mathrm{d} W_{t}\right\}\left|\Psi_{\mathrm{CM}}(R)\right\rangle
$$

macro
objectification

Example: free particle evolution $\quad \hat{H}=\frac{\hat{p}^{2}}{2 m}$ and projection on position operator $\hat{C}=\hat{x}$
initial double gaussian wave function

Amplification mechanism $\Longrightarrow \quad \gamma \propto N \quad$ (number of particles)

$$
\sigma_{x}(\infty)=\left(\frac{\hbar}{4 m \gamma}\right)^{\frac{1}{4}} \longrightarrow 4.7 \mathrm{~cm} \text { for a proton } \begin{aligned}
& 4.6 \times 10^{-14} \mathrm{~m} \text { for } 1 \mathrm{~g} \text { object } \\
& 5.9 \times 10^{-28} \mathrm{~m} \text { for the Earth }
\end{aligned}
$$

- Atomic energy levels
- Nuclear energy levels
- Diffraction Experiments
- Proton Decay
- Spontaneous Xray emission
- Spontaneous IGM warming
- Dissociation of cosmic H
- Decay of supercurrents
- Latent image formation
- Thermalized spectral distorsions
- Neutrino and kaon oscillations

Constraints:

(falsifiable theory!)

Cosmological perturbations: different test by orders of magnitude!

Classicalization of Cosmological Perturbations

Predictions of the theory:
Calculated by quantum average $\langle\Psi| \hat{O}|\Psi\rangle$

Usually in a lab: repeat the experiment

Here one has a single experiment (a single universe)

Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v}
$$

variable-mass scalar fields in Minkowski spacetime
second order perturbed Einstein action

$$
{ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} v^{2}\right]
$$

+ Fourier transform $\quad v(\eta, \boldsymbol{x})=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} \mathrm{~d}^{3} \boldsymbol{k} v_{\boldsymbol{k}}(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}$
slow-roll parameter
${ }^{(2)} \delta S=\int \mathrm{d} \eta \int \mathrm{d}^{3} \boldsymbol{k}\left\{v_{\boldsymbol{k}}^{\prime} v_{\boldsymbol{k}}^{* \prime}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}-k^{2}\right]\right\}$
Lagrangian formulation...

Hamiltonian

$$
H=\int \mathrm{d}^{3} \boldsymbol{k}\left\{p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}\right]\right\}
$$

collection of parametric oscillators with time dependent frequency
factorization of the full wave function real and imaginary parts

$$
\Psi[v(\eta, \boldsymbol{x})]=\prod_{k} \Psi_{k}\left(v_{k}^{\mathrm{R}}, v_{k}^{\mathrm{I}}\right)=\prod_{k} \Psi_{k}^{\mathrm{R}}\left(v_{k}^{\mathrm{R}}\right) \Psi_{k}^{\mathrm{I}}\left(v_{k}^{\mathrm{I}}\right)
$$

$$
\begin{aligned}
i \frac{\Psi_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}}{\partial \eta} & =\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} \Psi_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} \\
\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} & =-\frac{1}{2} \frac{\partial^{2}}{\partial\left(v_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}\right)^{2}}+\frac{1}{2} \omega^{2}(\eta, \boldsymbol{k})\left(\hat{v}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}\right)^{2}
\end{aligned}
$$

Gaussian state solution $\Psi\left(\eta, v_{k}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{k}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{k}(\eta) v_{k}^{2}}$

$$
\text { Wigner function } W\left(v_{\boldsymbol{k}}, p_{\boldsymbol{k}}\right)=\int \frac{\mathrm{d} x}{2 \pi^{2}} \Psi^{*}\left(v_{\boldsymbol{k}}-\frac{x}{2}\right) \mathrm{e}^{-i p_{k} x} \Psi\left(v_{\boldsymbol{k}}+\frac{x}{2}\right)
$$

$$
W \propto \delta\left(p_{\boldsymbol{k}}+k \tan \phi_{\boldsymbol{k}} v_{k}\right)
$$

Stochastic distribution of classical processes

Animations provided by V. Vennin... thx!

Primordial Power Spectrum

Standard case

$$
i \frac{\mathrm{~d}\left|\Psi_{\boldsymbol{k}}\right\rangle}{\mathrm{d} \eta}=\hat{\mathcal{H}}_{\boldsymbol{k}}\left|\Psi_{\boldsymbol{k}}\right\rangle
$$

Power-law inflation example
with

$$
\hat{\mathcal{H}}_{\boldsymbol{k}}=\frac{\hat{p}_{\boldsymbol{k}}^{2}}{2}+\omega^{2}(\boldsymbol{k}, \eta) \hat{v}_{\boldsymbol{k}}^{2}
$$

$$
\hat{v}_{k}=v_{k}
$$ $\hat{p}_{\boldsymbol{k}}=i \frac{\partial}{\partial v_{\boldsymbol{k}}}$

and

$$
\begin{aligned}
\omega^{2}(\boldsymbol{k}, \eta) & =k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} \\
& =k^{2}-\frac{\beta(\beta+1)}{\eta^{2}}
\end{aligned}
$$

$$
\beta \lesssim-2
$$

$$
\text { (de Sitter: } \beta=-2 \text {) }
$$

> Parametric Oscillator System

Primordial Power Spectrum

Quantization in the
Schrödinger picture
(functional representation)

$$
\Psi_{\boldsymbol{k}}\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}^{2}}
$$

$$
i \frac{\mathrm{~d}\left|\Psi_{\boldsymbol{k}}\right\rangle}{\mathrm{d} \eta}=\hat{\mathcal{H}}_{\boldsymbol{k}}\left|\Psi_{\boldsymbol{k}}\right\rangle \quad \text { with } \quad \hat{\mathcal{H}}_{\boldsymbol{k}}=\frac{\hat{p}_{\boldsymbol{k}}^{2}}{2}+\omega^{2}(\boldsymbol{k}, \eta) \hat{v}_{\boldsymbol{k}}^{2}
$$

$$
\Omega_{\boldsymbol{k}}^{\prime}=-2 i \Omega_{\boldsymbol{k}}^{2}+\frac{i}{2} \omega^{2}(\eta, \boldsymbol{k})
$$

$$
\Omega_{k}=-\frac{i}{2} \frac{f_{k}^{\prime}}{f_{k}}
$$

$$
f_{k}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{k}=0
$$

Primordial Power Spectrum
 Standard case

Two physical scales Hubble radius $H^{-1}=\frac{a^{2}}{a^{\prime}} \underset{\beta \sim-2}{\simeq} \ell_{0}$
wavelength $\quad \lambda=\frac{a}{k} \underset{\beta \sim-2}{\simeq} \frac{\ell_{0}}{-k \eta}$

sets initial conditions $f_{\boldsymbol{k}}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k}$

Primordial Power Spectrum

$$
\begin{array}{r}
f_{\boldsymbol{k}}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{\boldsymbol{k}}=0 \text { with } \omega^{2}(\boldsymbol{k}, \eta)=k^{2}-\frac{\beta(\beta+1)}{\eta^{2}} \text { and } f_{\boldsymbol{k}}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k} \\
\square \text { Uniquely determines } f_{\boldsymbol{k}} \xrightarrow{\Omega_{k}=-\frac{i}{2} \frac{f_{\boldsymbol{k}}^{\prime}}{f_{k}}} \Re_{\mathrm{e}} \Omega_{\boldsymbol{k}}=\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}
\end{array}
$$

Evaluated at the end of inflation $\left(k \eta \rightarrow 0^{-}\right)$, this gives $P_{v}(k)=\frac{k^{3}}{2 \pi^{3}}\left(\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}\right)$

$$
\text { and eventually } P_{\zeta}(k)=\frac{1}{2 a^{2} M_{\mathrm{Pl}}^{2} \epsilon_{1}} P_{v}(k)=A_{S} k^{n_{\mathrm{S}}-1}
$$

$$
\begin{aligned}
& \text { with } n_{\mathrm{S}}=2 \beta+5 \underset{\beta \sim-2}{\simeq} 1 \\
& \quad \text { Planck: } 1-n_{\mathrm{S}}=0.0389 \pm 0.0054
\end{aligned}
$$

Primordial Power Spectrum
 Modified Theory

Modified Schrödinger equation

$$
\begin{gathered}
\mathrm{d}\left|\Psi_{\boldsymbol{k}}\right\rangle=-i \hat{\mathcal{H}}_{\boldsymbol{k}}|\Psi\rangle \mathrm{d} \eta+\sqrt{\gamma}\left(\hat{v}_{k}-\left\langle\hat{v}_{k}\right\rangle\right) \mathrm{d} W_{\eta}\left|\Psi_{k}\right\rangle-\frac{\gamma}{2}\left(\hat{v}_{k}-\left\langle\hat{v}_{k}\right\rangle\right)^{2} \mathrm{~d} \eta\left|\Psi_{k}\right\rangle \\
\Psi_{k}\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \operatorname{extended\text {Gaussian}} \begin{array}{c}
\text { wave function }
\end{array} \\
\exp \left\{-\Re \mathrm{e}_{\boldsymbol{k}}(\eta)\left[v_{k}-\bar{v}_{k}(\eta)\right]^{2}+i \sigma_{\boldsymbol{k}}(\eta)+i \chi_{k}(\eta) v_{\boldsymbol{k}}-i \Im m \Omega_{\boldsymbol{k}}(\eta)\left(v_{\boldsymbol{k}}\right)^{2}\right\} \\
\\
\begin{array}{c}
\begin{array}{c}
\text { Modified equation of } \\
\text { motion }
\end{array} \\
\Omega_{\boldsymbol{k}}^{\prime}=-2 i \Omega_{\boldsymbol{k}}^{2}+\frac{i}{2} \omega^{2}(\eta, \boldsymbol{k})+\gamma \xrightarrow[\Omega_{k}=-\frac{i}{2} \frac{f_{k}^{\prime}}{f_{k}}]{ } f_{\boldsymbol{k}}^{\prime \prime}+\left[\omega^{2}(\eta, k)-2 i \gamma\right] f_{\boldsymbol{k}}=0
\end{array}
\end{gathered}
$$

Primordial Power Spectrum

$$
f_{k}^{\prime \prime}+\left[k^{2}-\frac{\beta(\beta+1)}{\eta^{2}}-2 i \gamma\right] f_{\boldsymbol{k}}=0
$$

Primordial Power Spectrum

comoving Hubble wavenumber now

$$
k<k_{\text {br }}=10
$$

Conclusions (1)

Quantum measurement problem very severe in cosmology
Test?
(non equilibrium...)
Two possible extensions of QM can be used
(Born rule not set by hand)

Constraint on γ

- collapse time

Plenty of new effects awaiting to be discovered/understood...

- final spread

