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Quantum cosmology
Hamiltonian GR
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Fig. 1: The 3 + 1 decomposition of the manifold, with lapse function, N , and shift
vector, N i.

One can construct an intrinsic curvature tensor 3Ri
jkl(h) from the intrinsic

metric alone – this of course describes the curvature intrinsic to the hypersurfaces
⇥t. One can also define an extrinsic curvature, (or second fundamental form), which
describes how the spatial hypersurfaces ⇥t curve with respect to the 4-dimensional
spacetime manifold within which they are embedded. This is given by

Kij ⇥� ni;j = ��0
ijn0

=
1

2N

�
Ni|j +Nj|i �

�hij

�t

⇥
,

(2.5)

where a semicolon denotes covariant di⇤erentiation with respect to the 4-metric, gµ� ,
and a vertical bar denotes covariant di⇤erentiation with respect to the 3-metric, hij:
Ni|j ⇥ Ni,j ��k

ijNk etc.
For a given foliation ofM by spatial hypersurfaces, ⇥t, it is always possible to

choose Gaussian normal coordinates, in which

ds2 = �dt2 + hijdxidxj. (2.6)

These are comoving coordinates (N i = 0) with the additional property that t is
the proper time parameter (N = 1). This is the standard “gauge choice” that is
made in classical cosmology, and in such coordinates Kij = �ḣij, where dot denotes
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In 3+1 expansion:

Canonical momenta

Primary constraints

Hamiltonian

Variation wrt lapse Hamiltonian constraint

Variation wrt shift momentum constraint
Secondary constraints

}

}
=)

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

Classical description
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�ḣij

= �
p

h

16⇥GN

�
Kij � hijK

�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥� ⇥
�L

��̇
=

⇤
h

N

✓
�̇�N i ⇤�

⇤xi

◆

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥0 � �L

�Ṅ
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Relevant configuration space?

parameters

GR          invariance / diffeomorphisms
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Dirac canonical quantisation

matter fields
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Primary constraints
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Minisuperspace
Restrict attention from an infinite dimensional configuration space to 2 dimensional space 
= mini - superspace 
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Conceptual and technical problems: 
!

Infinite number of dof       a few: mathematical consistency? 
Freeze momenta? Heisenberg uncertainties? 
QM = minisuperspace of QFT
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However, one can actually make calculations!
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Perfect fluid: Schutz formalism (’70)

Velocity potentials

canonical transformation: …

+ rescaling (volume…) + units… : simple Hamiltonian:

Exemple : Quantum cosmology of a perfect fluid
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Wheeler-De Witt
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What do we do with the wave function of the Universe???
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Quantum mechanics of closed systems

Physical system = Hilbert space of configurations 
                              State vectors 
                              Observables = self-adjoint operators 
                              Measurement = eigenvalue A|an⇥ = an|an⇥
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Collapse of the wavefunction:
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after

Schrödinger equation = linear (superposition principle) / unitary evolution

Wavepacket reduction = non linear / stochastic }Mutually 
incompatible

 + External observer
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Possible solutions and a criterion: the Born rule

Superselection rules
Modal interpretation
Consistent histories
Many worlds / many minds

Hidden variables
Modified Schrödinger dynamics}Born rule not put by hand!

A. Bassi, G.C. Ghirardi / Physics Reports 379 (2003) 257–426 277

Fig. 1.

4. Possible ways out of the macro-objecti!cation problem

Various ways to overcome the measurement problem have been considered in the literature: in
this section we brie!y describe and discuss them. It is useful to arrange the various proposals in a
hierarchical tree-like structure [14], taking into account the fundamental points on which they di"er:
in the #gure below we present a diagram which may help in following the argument. Subsequently
we will comment on the various options.

4.1. Listing the possible ways out

A #rst distinction among the alternatives which have been considered in the literature derives
from taking into account the role which they assign to the statevector | ⟩ of a system (Fig. 1). This
leads to the Incompleteness versus Formal Completeness option:
Incompleteness: this approach rests on the assertion that the speci#cation of the state | ⟩ of the

system is insu$cient: further parameters, besides the wavefunction, must be considered, allowing us
to assign de#nite properties to physical systems.
Formal Completeness: it is assumed that the assignment of the statevector represents the most

accurate possible speci#cation of the state of a physical system.
When the assumption of Formal Completeness is made, two fundamentally di"erent positions can

be taken about the status of an ensemble—a pure case in the standard scheme—all individuals of

|�f⇧ = T exp
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|⇤ ⇧ � |SGin⇧
o

n
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A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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1927 Solvay meeting and von Neuman mistake ... ‘In 1952, I saw the impossible done’ (J. Bell)

Louis de Broglie (Prince, duke ...) David Bohm (Communist)

Ontological formulation (dBB)
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Schrödinger

Polar form of the wave function

Hamilton-Jacobi 

quantum 
potential

Hidden Variable Theories
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Ontological formulation (BdB)
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Ĥ (⇥) d⇥

⇥
|�in⌥

=
1�
2

(|⇤ ⌥ � |SG�⌥+ |⌅ ⌥ � |SG⇥⌥) (1)

|�in⌥ =
1�
2

(|⇤ ⌥+ |⌅ ⌥)� |SGin⌥

⌅
|⇤ ⌥ � |SGin⌥

⇧
⌃

⌅
|⌅ ⌥ � |SGin⌥

⇧

⌅
(|⇤ ⌥+ |⌅ ⌥)� |SGin⌥

⇧

1

Ontological formulation (dBB)

Trajectories satisfy (de Broglie) m
dx

dt
= ⌥m
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Properties: 

classical limit well defined
state dependent
      intrinsic reality

no need for external classical domain/observer!

strictly equivalent to Copenhagen QM
probability distribution (attractor) 

non local … 
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⇥
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The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...

X
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Back to the QC wave function 
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Gaussian wave packet
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Hidden trajectory
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quantum potential
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J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal,, Phys. Lett. A241, 229 (1998) 



January 23rd 2014 !18

quantum potential
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J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal,, Phys. Lett. A241, 229 (1998) 

Natural quantum solution to the sin
gularity

 problem!
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What about perturbations?
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+

+ + + ...

Superposition
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Collapse in 1992 ???

+

+ + + ...

Superposition
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Collapse in 1992 ??? Further collapse in 2003 
on smaller scales???

+

+ + + ...

Superposition
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Collapse in 1992 ???

+

+ + + ...

Superposition
Final (ultimate!) collapse 

in 2012?
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Usual treatment of the perturbations?

conformal time

Einstein-Hilbert action up to 2nd order

Bardeen (Newton) gravitational potential
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Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!! z = z[a(η)]
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Classical Quantum
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V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, Phys. Rep. 215, 203 (1992) 

Both background and perturbations are quantum
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Use dBB or...

!21

Self-consistent treatment of the perturbations?

Hamiltonian up to 2nd order

factorization of the wave function

comes from 0th order
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The GRW dynamical collapse model
Ghirardi - Rimini - Weber

Hamiltonian
non linear

d|�⌅ = �iĤ|�⌅dt +
⇧
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Wiener process

 stochastic
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normalization

break superposition principle

random outcomes
Born rule

BONUS: Amplification mechanism

Big objects are classical 
small objects are quantum!

Modified Schrödinger 
equation with collapse 
towards     eigenstates
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Primordial perturbations

Grown perturbations
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constrained...

Year first author [ref.] interfering m/mp τ d in GRW in GRW in CSL in CSL
object λ < λ/σ2 < λ < λ/σ2 <

1927 Davisson [13] electron 5× 10−4 N/A 2×10−10m 1014 s−1 3×1033m−2s−1 1017 s−1 5×1036 m−2s−1

1930 Estermann [15] He 4 N/A 4×10−10m 1011 s−1 6×1029m−2s−1 3×1010 s−1 1029 m−2s−1

1959 Möllenstedt [28] electron 5× 10−4 3×10−9 s 2×10−6 m 7×1011 s−1 1023m−2s−1 1015 s−1 3×1026 m−2s−1

1987 Tonomura [37] electron 5× 10−4 10−8 s 10−4 m 2×1011 s−1 2×1019m−2s−1 4×1014 s−1 4×1022 m−2s−1

1988 Zeilinger [40] neutron 1 10−2 s 10−4 m 2×102 s−1 2×1010m−2s−1 2×102 s−1 2×1010 m−2s−1

1991 Carnal [9] He 4 6×10−4 s 10−5 m 4×102 s−1 4×1012m−2s−1 102 s−1 1012 m−2s−1

1999 Arndt [4] C60 720 6×10−3 s 10−7 m 2×10−1s−1 2×1013m−2s−1 3×10−4 s−1 3×1010 m−2s−1

2001 Nairz [29] C70 840 10−2 s 3×10−7 m 10−1s−1 1012m−2s−1 10−4 s−1 109 m−2s−1

2004 Hackermüller [24] C70 840 2×10−3 s 10−6 m 100 s−1 1012m−2s−1 10−3 s−1 109 m−2s−1

2007 Gerlich [17] C30H12F30N2O4 103 10−3 s 3×10−7 m 100 s−1 1013m−2s−1 10−3 s−1 1010 m−2s−1

2011 Gerlich [18] C60[C12F25]10 7× 103 10−3 s 3×10−7 m 10−1s−1 1012m−2s−1 10−5 s−1 108 m−2s−1

Proposed future experiments

Romero-Isart [35] [SiO2]150,000 107 10−1 s 4×10−7 m 10−6s−1 6×106 m−2s−1 10−13s−1 6×10−1m−2s−1

Nimmrichter [30] Au500,000 108 6×100 s 10−7 m 2×10−9s−1 2×105 m−2s−1 2×10−17s−1 2×10−3m−2s−1

Table 1: Bounds on σ,λ obtained from different diffraction experiments. For each experiment, m = mass of the interfering
object, mp = proton mass, τ = time of flight between grating and image plane, d = period of grating (or transverse coherence
length in [37]), N/A = not applicable. For each theory (GRW or CSL), two bounds are obtained. This table is the basis for
Fig. 3.
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⌘
dW

t

|⇥⌥ � �

2

⇣
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providing its time development.
Let us now come to another very important aspect of

the CSL theory and describe the so-called “amplification
mechanism” which enables to understand why the dy-
namics of microscopic systems is not much altered by the
extra stochastic and non linear terms in Eq. (106). This
is phenomenologically very important since this means
that the laboratory experiments performed on “small”
quantum systems are still accurately predicted by the
standard Schrödinger equation while the macroscopic ob-
jects are quickly and e⇤ciently localized. Let us consider
an ensemble of N identical particles, assuming that, for
each of them, the collapse operator is the physical po-
sition in space. Therefore, we can identify the operator
and Wiener processes according to

B̂ ⌥ ⌦
�

N�

i=1

x̂i and dWt ⌥ dW (i)
t (110)

in Eq. (106), with x̂i the position operator for the ith

particle. Note that in this case, one has as many in-
dependent Wiener processes as there are particles; they

satisfy

E
�
dW (i)

t dW (j)
t�

�
= ⇥ij⇥ (t � t⇥) dt2. (111)

This naturally generalizes Eq. (106) to a set of operators
and particles on which to project the relevant states.

We now assume that one can decompose the total wave
vector |� in the form

|� ({xi}) = |�CM (R) ⇤ |�rel ({ri}) , (112)

where the total wavefunction depends on the set of all the
position operators {xi}, while the ”macroscopic” part of
it, |�CM , depends only on the position R ⌅ N�1

↵
i xi

of the center of mass, and the rest is a function only of
the relative coordinates ri defined through xi = R + ri.

Using Itô calculus to evaluate the di⇥erential of the
tensor product in Eq. (112), it is easily checked that
|� ({xi}) satisfies Eq. (106) with B̂ and dWt given by
Eq. (110) if the components of the product respectively
satisfy

d|�CM (R) =
⇧⇤

�iĤCM � �CM

2

�
R̂ � �R̂ 

⇥2
⌅

dt +
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and
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2
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i=1

(r̂i � �r̂i )2
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i=1

(r̂i � �r̂i ) dW (i)
t

⌦
|�rel ({ri}) , (114)

where we have assumed the total Hamiltonian could be
split into Ĥ = ĤCM(R̂)+Ĥrel ({r̂i}) and the new constant
�CM appearing in Eq. (113) is given by �CM = N�. This
illustrates the mechanism thanks to which localization
is amplified for a macroscopic object containing a large
number (in practice N ⇧ 1023 ⌃ 1 for usual classical
systems) of particles, while the usual quantum spread is
mostly conserved for the internal degrees of freedom. A
recent inventory of all the constraints derived so far in
various physical situations on the CSL parameter � can
be found in Ref. [109].

B. An Illustrative Example: the Harmonic
Oscillator

In this section, we illustrate how the CSL theory works
on the example of the harmonic oscillator resetting the
Planck constant � for easier comparison with previous
works. This is an interesting case because it represents
the prototypical example of a quantum system and, to
our knowledge, this case has not been solved explicitly

in the case of the CSL theory. Moreover, in cosmology,
as explained before, we deal with a parametric oscillator,
a case which shares some similarities with an harmonic
oscillator, at least in some regimes. It is therefore im-
portant to understand first this simplest case in the CSL
framework. In the following, we assume that the opera-
tor B̂ introduced in the previous section is the position
operator x̂. As a consequence, the modified Schrödinger
equation can be written as

d� =
⇤
� i

�Ĥdt +
⌦

� (x̂ � �x̂ ) dWt

� �

2
(x̂ � �x̂ )2 dt

�
� , (115)

where Ĥ = p̂2/(2m)+m⇤2x̂2/2 is the Hamiltonian. The
parameter � sets the strength of the collapse mechanism
and, since we have chosen the position as the preferred
basis, it has dimension L�2 ⇥ T�1. Following Ref. [71],
the wavefunction can be taken as a Gaussian state and
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split into Ĥ = ĤCM(R̂)+Ĥrel ({r̂i}) and the new constant
�CM appearing in Eq. (113) is given by �CM = N�. This
illustrates the mechanism thanks to which localization
is amplified for a macroscopic object containing a large
number (in practice N ⇧ 1023 ⌃ 1 for usual classical
systems) of particles, while the usual quantum spread is
mostly conserved for the internal degrees of freedom. A
recent inventory of all the constraints derived so far in
various physical situations on the CSL parameter � can
be found in Ref. [109].

B. An Illustrative Example: the Harmonic
Oscillator

In this section, we illustrate how the CSL theory works
on the example of the harmonic oscillator resetting the
Planck constant � for easier comparison with previous
works. This is an interesting case because it represents
the prototypical example of a quantum system and, to
our knowledge, this case has not been solved explicitly

in the case of the CSL theory. Moreover, in cosmology,
as explained before, we deal with a parametric oscillator,
a case which shares some similarities with an harmonic
oscillator, at least in some regimes. It is therefore im-
portant to understand first this simplest case in the CSL
framework. In the following, we assume that the opera-
tor B̂ introduced in the previous section is the position
operator x̂. As a consequence, the modified Schrödinger
equation can be written as

d� =
⇤
� i
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�iĤCM � N�

2

�
R̂ � �R̂ 

⇥2
⌅

dt +
✏

N�
�
R̂ � �R̂ 

⇥
dWt

⌃
|�CM (R) , (113)

and

d|�rel ({ri}) =

 ⌥
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�Ĥdt +
⌦

� (x̂ � �x̂ ) dWt

� �

2
(x̂ � �x̂ )2 dt

�
� , (115)
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⇧

�
⇣
Ĉ � ⇤Ĉ⌅

⌘
dWt|�⌅ �

�

2

⇣
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⌘2

dt|�⇧

E (dWtdWt0) = dtdt0⇥(t� t0)
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Ĉ � ⌅Ĉ⇧
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Ĉ � ⇧Ĉ⌃
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Ĉ � ⇧Ĉ⌃
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  Atomic energy levels 
  Nuclear energy levels 
  Diffraction Experiments  
  Proton Decay 
  Spontaneous Xray emission 
  Spontaneous IGM warming 
  Dissociation of cosmic H 
  Decay&of&supercurrents&
  Latent&image&forma3on&
  Thermalized&spectral&distorsions&
  Neutrino&&and&kaon&oscilla3ons&

Constraints: 
(falsifiable theory!)
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Constraints: 
(falsifiable theory!)

Cosmological perturbations: different test by orders of magnitude!
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Classicalization of Cosmological Perturbations 

Predictions of the theory: Calculated by quantum average ��|Ô|�⇥

Usually in a lab: 
repeat the experiment 

Ensemble 
average over 
experiments 

Quantum 
average 

Ergodicity 

Here one has a single 
experiment (a single universe) 

Spatial 
average over 
directions in 

the sky 

Quantum 
average 
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Classical temperature fluctuations promoted to quantum operators
w = 1
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5.9⇥ 10�28 m for the Earth

1

second order perturbed Einstein action

5

The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]
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1
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⌅
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(6)
where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
(M2

Pl
/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have
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with v�k = v⇥k because v(⌅,x) is real. Then inserting
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk
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where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
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and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.
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that we work with a linear theory and, hence, all the
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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is done in the Heisenberg picture. Here, we carry out the
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tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
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if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
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Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have
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with v�k = v⇥k because v(⌅,x) is real. Then inserting
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
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much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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In this section, we review how the cosmological pertur-
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
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much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (⌅,x) =
1

(2⇧)3/2

�

R3
d3k vk (⌅)eik·x , (7)

with v�k = v⇥k because v(⌅,x) is real. Then inserting
this expansion into Eq. (6), one arrives at [12]
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
⇥L
⇥v⇥k

⇤ = v⇤k , (9)

where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as

⌃2 (⌅,k) = k2 �
�
a
⇧
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a
⇧
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. (11)

We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
(M2

Pl
/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (⌅,x) =
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(2⇧)3/2
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
⇥L
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where L is the Lagrangian density in Fourier space that
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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Quantization is achieved by promoting vk and pk to
quantum operators, v̂k and p̂k, and by requiring the
canonical commutation relations

�
v̂R

k , p̂R
q

⇥
= i� (k � q) ,

�
v̂I

k, p̂I
q

⇥
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These relations admit the following representation
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k � , p̂R,I
k � = �i

⇧�
⇧vR,I

k

. (16)

The wavefunctional � [v(⇥,x)] obeys the Schrödinger
equation which, in this context, is a functional di⇤er-
ential equation. However, since each mode evolves in-
dependently, this functional di⇤erential equation can be
reduced to an infinite number of di⇤erential equations for
each �k. Concretely, we have

i
�R,I

k

⇧⇥
= ĤR,I

k �R,I
k , (17)

where the Hamiltonian densities ĤR,I
k , are related to the

Hamiltonian by Ĥ =
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⇤
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⌅
. They can be
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1
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v̂R,I

k

⌅2
, (18)

where we have made use of the representations (16).
We are now in a position where we can solve the

Schrödinger equation. Let us consider the following
Gaussian state

�R,I
k

⇤
⇥, vR,I

k

⌅
= Nk(⇥)e��k(�)(vR,I

k )2

. (19)

The functions Nk(⇥) and ⇥k(⇥) are time dependent and
do not carry the subscripts “R” and/or “I” because they
are the same for the wavefunctions of the real and imagi-
nary parts of the Mukhanov-Sasaki variable (see below).
Then, inserting �k given by Eq. (19) into the Schrödinger
equation (17) implies that Nk and ⇥k obey the di⇤eren-
tial equations

i
N ⌅

k

Nk
= ⇥k, ⇥⌅k = �2i⇥2

k +
i

2
⌅2(⇥,k). (20)

The solutions can be easily found and read

|Nk| =
⇧

2⇧e ⇥k

⇤

⌃1/4

, ⇥k = � i

2
f ⌅k
fk

, (21)

where fk is a function obeying the equation f ⌅⌅k +⌅2fk =
0, that is to say exactly Eq. (12). The first equation (21)

guarantees that the wavefunction is properly normalized,
i.e.

�
�R,I

k �R,I
k

⇥dvR,I
k = 1. (22)

Let us now discuss the initial conditions. The funda-
mental assumption of inflation is that the perturbations
are initially in their ground state. At the beginning of in-
flation, all the modes of astrophysical interest today have
a physical wavelength smaller than the Hubble radius,
i.e. k/(aH)⇤⌅. In this regime, one has ⌅2(⇥,k)⇤ k2

and each mode now behaves as an harmonic oscillator (as
opposed to a parametric oscillator in the generic case)
with frequency ⌅ = k. As a consequence, the di⇤erential
equation for fk(⇥) can easily be solved and the solution
reads fk = Akeik� + Bke�ik�, Ak and Bk being integra-
tion constants. Upon using the second equation (21), one
has

⇥k ⇤
k

2
Akeik� �Bke�ik�

Akeik� + Bke�ik�
. (23)

The wavefunction (19) represents the ground state wave-
function of an harmonic oscillator if ⇥k = k/2. There-
fore, one must choose the initial conditions such that
Bk = 0. Moreover, it is easy to check that the Wronskian
W ⇥ f ⌅kf⇥k � f ⌅⇥k fk is a conserved quantity, dW/d⇥ = 0,
thanks to the equation of motion of fk. Straightforward
calculation leads to W = 2ik |Ak|2. In the Heisenberg
picture the canonical commutation relations require that
W = i. Even if in the Schrödinger picture presently used,
the specific value of W is irrelevant since it cancels out
on all calculable physical quantities, this value is conven-
tionally adopted, which amounts to setting Ak = 1/

⌃
2k.

As announced, requiring the initial state to be the ground
state has completely fixed the initial conditions. We
see that Eq. (12) (or, equivalently, the equation for fk)
should thus be solved with the boundary condition

lim
k/(aH)⇤+⇧

fk =
1⌃
2k

eik�. (24)

This choice of initial conditions is referred to as the
Bunch-Davies vacuum.

C. The Power Spectrum

Let us now turn to the calculation of the power spec-
trum and first introduce the two-point correlation func-
tion, defined by
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= ĤR,I

k �R,I
k , (17)

where the Hamiltonian densities ĤR,I
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The next step consists in deriving an equation of mo-
tion for v(⌅,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(⌅,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]
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where ⇤1 = 1 � H⇤/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H2(1 � ⇤1) shows,
the condition ⇤1 < 1 is in fact su⇤cient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if ⇤1 ⇤ 1. In this case, it is easy to show that ⇤1 ⌅
(M2

Pl
/2V 2)(dV/d⌥)2, i.e. ⇤1 is in fact a measure of how

much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has ⇤1 = (2 + �)/(1 + �) and,
of course, ⇤1 = 0 when � = �2 (de Sitter solution). The
scale factor can also be rewritten as a(⌅) ⌅  0(�⌅)�1��1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with � � �2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(⌅,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (⌅,x) =
1

(2⇧)3/2
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d3k vk (⌅)eik·x , (7)

with v�k = v⇥k because v(⌅,x) is real. Then inserting
this expansion into Eq. (6), one arrives at [12]
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
⇥L
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⇤ = v⇤k , (9)

where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
di⇥erent inflationary backgrounds (i.e. di⇥erent inflaton
potentials) lead to di⇥erent ⌃(⌅,k) and, therefore, to dif-
ferent behaviors for vk(⌅). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v⇤⇤k + ⌃2 (⌅,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (⌥) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ⌃2(⌅,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, � [v(⌅,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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Ĉ � ⇧Ĉ⌃
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Primordial Power Spectrum 
Standard case 

Quantization in the 
Schrödinger picture 
(functional representation) 
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Primordial Power Spectrum 
Standard case 

Quantization in the 
Schrödinger picture 
(functional representation) 
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Primordial Power Spectrum 
Standard case 
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Primordial Power Spectrum 
Standard case 
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Primordial Power Spectrum 
Modified Theory 

Modified Schrödinger equation 

Extended Gaussian 
wave function 
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Primordial Power Spectrum 
Modified Theory 
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Primordial Power Spectrum 
Modified Theory 
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Conclusions (1)

Quantum measurement problem very severe in cosmology

Two possible extensions of QM can be used 
(Born rule not set by hand)

dBB ontology

Spontaneous collapse

Test? 
(non equilibrium...)

Constraint on  
!
- collapse time 
- final spread

=⌅

�

⇥� ⇤ 1013⇥H

Q ⇥ � 1

2m

r2|�|
|�|

m
d2

x

dt2
= �r(V + Q)

m
dx

dt
= ⌃m

��r�

|�(x, t)|2 = �rS

⇧x(t)

1

=⌅

X

�� ⇤ 1013�H

Q ⇥ � 1

2m

r2|�|
|�|

m
d2

x

dt2
= �r(V + Q)

m
dx

dt
= ⌃m

��r�

|�(x, t)|2 = �rS

⇧x(t)

1

Plenty of new effects awaiting to be discovered/understood...


