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Glass and jamming transitions The glass transition

The liquid-glass transition
Macroscopically well-known for thousands of years. . .

Dynamical arrest of a liquid into an amorphous solid state
No change in structure, g(r) unchanged
Driven by thermal fluctuations: entropic e↵ects, entropic rigidity
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Glass and jamming transitions The glass transition

The liquid-glass transition
Macroscopically well-known for thousands of years. . .

. . . yet constructing a first-principle theory is a very di�cult problem!

No natural small parameter to construct a perturbative expansion
Low density virial expansion: fails, too dense
Harmonic expansion: fails, reference positions are not known

Several processes simultaneously at work: crystal nucleation, ergodicity breaking,
activated barrier crossing, dynamic facilitation

Laboratory glasses are very far from criticality (if any)
Theory must take into account strong pre-critical corrections

[Berthier, Biroli, RMP 83, 587 (2011)]
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Glass and jamming transitions The jamming transition

The jamming transition
Another transition that is observed in everyday experience

An athermal assembly of repulsive particles
Transition from a loose, floppy state to a mechanically rigid state
Above jamming a mechanically stable network of particles in contact is formed

ϕj ϕ

For hard spheres, 'j is also known as random close packing: 'j (d = 3) ⇡ 0.64

[Bernal, Mason, Nature 188, 910 (1960)]
[O’Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002)]
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Glass and jamming transitions The jamming transition

The jamming transition
Granular materials, emulsion droplets, colloidal suspensions, powders, . . .

. . . , board games, . . .

Photoelastic disks from B.Behringer’s group
ZipZap courtesy of O.Dauchot
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Glass and jamming transitions The jamming transition

The jamming transition
Granular materials, emulsion droplets, colloidal suspensions, powders, . . .

criticality of jamming is easily observed:
e.g. for hard spheres, p = �P/⇢ ⇠ |'� 'j |�1 and � ⇠ p� with  < 2

robustly universal properties, independent of d

anomalous “soft modes” associated to a diverging correlation length

[Van Hecke, J.Phys.: Cond.Mat. 22, 033101 (2010)]
[Ikeda, Berthier, Biroli, JCP 138, 12A507 (2013)]
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Glass and jamming transitions Marginality and criticality at jamming

Marginality and criticality at jamming

Force balance on each particle: ~Fi =
P

j
~fij =

P
j fij r̂ij = 0

Given packing {r̂ij}: dN linear equations for zN/2 variables fij

To have a solution z � 2d

Numerical simulations: at 'j , z = 2d , isostatic packings

Open one contact ! remove one variable fij ! no solution, unstable ! floppy mode

Stable system of N particles with (z + �z)N/2 contacts, N = Ld

Cut in two parts: remove cLd�1 contacts

�z = �z Ld/2� cLd�1 > 0 $ �z > 2/(cL)

Stable packing only for L > L⇤ = 2/(c �z) where continuum elasticity holds

Numerical simulations: �z ⇠ |'� 'j |⌫ ! L⇤ ⇠ |'� 'j |�⌫ , ⌫ ⇡ 1/2

Criticality and a divergent L⇤ are direct consequences of isostaticity and marginal stability

[Wyart, Nagel, Silbert, Witten, PRE 72, 051306 (2005)]
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Glass and jamming transitions Glass/jamming phase diagram

Glass/jamming phase diagram

The soft sphere model:
v(r) = ✏(1� r/�)2✓(r � �)

Two control parameters:
T/✏ and ' = V�N/V

T/✏ = 0$ hard spheres

The glass transition goes from liquid to an “entropically” rigid solid
Jamming is a transition from “entropic” rigidity to “mechanical” rigidity

[Ikeda, Berthier, Sollich, PRL 109, 018301 (2012)]

Francesco Zamponi (CNRS/LPT-ENS) Glasses and jamming January 9, 2014 8 / 27



Glass and jamming transitions Glass/jamming phase diagram

Glass/jamming phase diagram
T/✏

'

Glass
Liquid

'g 'j

Jammed states

Tg(')

A theoretical description of the glass transition is di�cult; and jamming happens inside the glass!
Problem: Tg (') and 'j depend on the numerical/experimental protocol
Remark: same phase diagram as random optimization problems, e.g. qCOL

[Berthier, Jacquin, FZ, PRE 84, 051103 (2011)]
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Glass and jamming transitions Summary

Glass/jamming transitions: summary

Liquid-glass and jamming are new challenging kinds of phase transitions

Disordered system, no clear patter of symmetry breaking

Unified phase diagram, jamming happens at T = 0 inside the glass phase

Criticality at jamming is due to isostaticity and associated anomalous response
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A theory of the glass and jamming transitions Expansion around d = 1 in statistical mechanics

Expansion around d = 1 in statistical mechanics

“But suppose that we were unable to diagonalize the Hamiltonian [of QCD] exactly, and that even a computer solution were
formidably di�cult or impossible. How then might we proceed? To make progress, we must make an expansion of some kind.
Since there is no obvious expansion parameter we must find a hidden one. [...] We may take a cue from the spectacular
developments [...] in critical phenomena [...] [and] regard the number of spatial dimensions not as a fixed number, three, but as
a variable parameter.”

[E.Witten, Physics Today 33, 38 (1980)]

Many fields of physics (QCD, turbulence, critical phenomena, non-equilibrium ... glasses!)
struggle because of the absence of a small parameter

Proposal: 1/d is a small parameter

Exact solution for d =1 is possible, using your favorite mean field method:
for hard spheres, it predicts distinct glass ( RFOT) and jamming transitions

Question: which features of the d =1 solution translate smoothly to finite d?

For the glass transition, the answer is very debated!

For the jamming transition, numerical simulations show that the properties of the transition are
independent of d

[Goodrich, Liu, Nagel, PRL 109, 095704 (2012)]
[Charbonneau, Corwin, Parisi, FZ, PRL 109, 205501 (2012)]
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A theory of the glass and jamming transitions Expansion around d = 1 in statistical mechanics

Expansion around d = 1 in statistical mechanics

Theory of second order PT (gas-liquid)

• Qualitative MFT (Landau, 1937)
Spontaneous Z2 symmetry breaking
Scalar order parameter
Critical slowing down

• Quantitative MFT (exact for d !1)
Liquid-gas: �p/⇢ = 1/(1� ⇢b)� �a⇢

(Van der Waals 1873)
Magnetic: m = tanh(�Jm)

(Curie-Weiss 1907)

• Quantitative theory in finite d (1950s)
(approximate, far from the critical point)

Hypernetted Chain (HNC)
Percus-Yevick (PY)

• Corrections around MFT
Ginzburg criterion, du = 4 (1960)
Renormalization group (1970s)
Nucleation theory (Langer, 1960)

Theory of the liquid-glass transition

• Qualitative MFT (Parisi, 1979; KTW, 1987)
Spontaneous replica symmetry breaking
Order parameter: overlap matrix qab
Dynamical transition “à la MCT”

• Quantitative MFT (exact for d !1)
Kirkpatrick and Wolynes 1987
Kurchan, Parisi, Urbani, FZ 2006-2013

• Quantitative theory in finite d
DFT (Stoessel-Wolynes 1984)
MCT (Bengtzelius-Götze-Sjolander 1984)
Replicas (Mézard-Parisi 1996, +FZ 2010)

• Corrections around MFT
Ginzburg criterion, du = 8 (2007, 2012)
Renormalization group (2011–)
Nucleation (RFOT) theory (KTW 1987)
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A theory of the glass and jamming transitions Exact solution of the hard sphere model in d = 1

The RFOT picture
[Goldstein, Stillinger, Weber et al. 1969 - ...]

[Kirkpatrick, Thirumalai, Wolynes 1987-1989]

glass

{ri}

E

{Ri} {Xi}

supercooled liquid energy

basin

The supercooled liquid is a collection of glasses
Each equilibrium liquid configuration R belongs to a metastable glass state

X is a copy of the system. If X (t = 0) = R, either X ⇠ R at all times (glass), or X di↵uses
away from R (liquid). The dynamics of X is the equilibrium dynamics of the liquid.

Relaxation in the supercooled liquid is like escaping from a metastable state – except that the
process is repeated over and over

[Krzakala and Zdeborova, JCP 134, 034513 (2011)]
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A theory of the glass and jamming transitions Exact solution of the hard sphere model in d = 1

Why replicas?

{X2
i }

{ri}

E

{Ri}

supercooled liquid energy

basin

glass

{X1
i }

{X3
i }

A modified, constrained equilibrium replaces dynamics

Fg = �kBT
R
dR e��H[R]

Z logZ [X |R] Z [X |R] =
R
dXe��0H[X ]+�0"

P
i (Xi�Ri )

2

Need replicas: Fg = �kBT limn!0 log
⇥R

dRe��H[R]Z [X |R]n
⇤
� Fliq

The replicated system is a homogeneous and isotropic “molecular liquid” that can be treated by
standard liquid theory

[Franz, Parisi, J. de Physique I 5, 1401 (1995)]
[Monasson, PRL 75, 2847 (1995)]

Francesco Zamponi (CNRS/LPT-ENS) Glasses and jamming January 9, 2014 14 / 27



A theory of the glass and jamming transitions Exact solution of the hard sphere model in d = 1

Solution of the hard sphere model in d = 1

A liquid of molecules, each made by m atoms: x̄ = {x1 · · · xm}
In d !1 only the first virial coe�cient survives
The entropy is:
S[⇢(x̄)] =

R
dx̄⇢(x̄)[1� log ⇢(x̄)] + 1

2

R
dx̄dȳ⇢(x̄)⇢(ȳ)f (x̄ , ȳ)

Rotational and translational invariance: ⇢(x̄) = ⇢(qab), qab = ua · ub, ua = xa � 1
m

P
b xb

From d m to (m � 1)(m � 2)/2 coordinates

Saddle-point evaluation for d !1: S[qab]
qab determined by the saddle-point equation

No hope to solve for generic qab ! use hierarchical matrices introduced by Parisi

Exact solution within the “full replica symmetry breaking” structure of qab

[Kurchan, Parisi, FZ, JSTAT (2012) P10012]
[Kurchan, Parisi, Urbani, FZ, J.Phys.Chem. B 117, 12979 (2013)]

[Charbonneau, Kurchan, Parisi, Urbani, FZ, arXiv:1310.2549]

Approximate solution in finite d :
- a Gaussian assumption for ⇢(x̄) (exact for d =1)
- resummation of virial diagrams (through HNC or similar)

[Parisi, FZ, RMP 82, 789 (2010)]

Francesco Zamponi (CNRS/LPT-ENS) Glasses and jamming January 9, 2014 15 / 27



A theory of the glass and jamming transitions Summary

Theory of glass/jamming: summary

A 1/d expansion around a mean-field solution is a standard tool
when the problem lack a natural small parameter

Hard spheres are exactly solvable when d !1
They have a glass phase and a jamming transition

You can choose your preferred method of solution: replicas are convenient

An approximate mean field solution in finite d is obtained by resumming virial diagrams
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Predictions of the theory, and numerical tests
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Predictions of the theory, and numerical tests Phase diagram

The phase diagram (theory)

Prediction of the theory for d =1:

equilibrium liquid

stable glass

marginal glass

J-line
0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

d
/p

4 5 6 7 8 9
2d'/d

4 5 6 7 8 9

Distinct glasses, depending on initial equilibrium density ! A range of jamming densities

A Gardner transition, stable glass ! marginal glass

[Charbonneau, Kurchan, Parisi, Urbani, FZ, arXiv:1310.2549]
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Predictions of the theory, and numerical tests Phase diagram

The phase diagram (simulation)

10 15 20 25 30
2d
ϕ

0

0.05

0.1

1/p

fluid EOS (fit)
threshold glass (extr.)
ideal glass (RT)

Decreasing γ
0.1, 0.03, ... , 0.00003

ϕK

ϕGCP

ϕd

ϕth 0

10

20

30

40

50

60

2d
'

3 4 5 6 7 8 9 10 11 12 13 14

d
3 4 5 6 7 8 9 10 11 12 13 14

'th

'GCP

�=10�1–3⇥10�5

0.8

0.9

1.0

'
/'

th

3 4 5 6 7 8 9 10 11 12 13

d

Compression of d-dimensional hard spheres at rate � (Lubachevsky-Stillinger event-driven MD)

pfluid(') = 1 + 2d�1' 1�Ad '
(1�')d

pglass(�,') =
d 'j(�)[1�f (�)]

'j(�)�'

A range of jammed packings depending on compression speed: OK
Analytic computation of the glass EOS is possible: work in progress

[Charbonneau, Ikeda, Parisi, FZ, PRL 107, 185702 (2011)]
[Charbonneau, Corwin, Parisi, FZ, PRL 109, 205501 (2012)]
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Predictions of the theory, and numerical tests Critical dynamics at the dynamic glass transition

Critical dynamics at the dynamic glass transition

d=6
'=0.1453–0.1720

10�3

10�2

10�1

100

101

h�
r2
(t
)i

10�2 10�1 100 101 102 103 104 105

t
10�2 10�1 100 101 102 103 104 105

10�6

10�5

10�4

10�3

10�2

D

5 10�2
2 5 10�1

2

(�d � �)/�d

5 10�2
2 5 10�1

2

d=4–9

2.0

2.2

2.4

2.6

2.8

2.0

2.2

2.4

2.6

2.8

�

4 5 6 7 8 9
d

Equilibrium MD simulation in the liquid close to 'd

MCT-like dynamical criticality: D ⇠ |'� 'd |�

[Charbonneau, Ikeda, Parisi, FZ, PNAS 109, 13939 (2012)]

Analytic computation in d =1 of the exponent �MCT = 0.70698! � = 2.33786
Finite d computation in progress

[Kurchan, Parisi, Urbani, FZ, J.Phys.Chem. B 117, 12979 (2013)]
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Predictions of the theory, and numerical tests Critical scaling at jamming

The Gardner transition

Theory predicts a Gardner
transition in the glass phase

Gardner transition:
stable ! marginally stable glass

The J-line falls inside the
marginal phase

equilibrium liquid

stable glass

marginal glass

J-line
0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

d
/p

4 5 6 7 8 9
2d'/d

4 5 6 7 8 9

[Charbonneau, Kurchan, Parisi, Urbani, FZ, arXiv:1310.2549]
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Predictions of the theory, and numerical tests Critical scaling at jamming

Mean square displacement in the glass

10�16

10�12

10�8

10�4

1

h�
r(
t)

2
i

10�8 10�6 10�4 10�2 1 102

t
10�8 10�6 10�4 10�2 1 102

10�9

10�6

10�3

10�9

10�6

10�3

�
E
A

102 104 106 108p102 104 106 108

d = 3
d = 4
d = 6
d = 8
⇠ p�

In the glass the MSD has a plateau: di↵usion is arrested, only vibrations

The plateau value �EA is the Debye-Waller factor

Independent caging: �EA ⇠ p�2 (e.g. crystal)

Theory: �EA ⇠ p� with  = 1.416; excellent agreement with MD

�EA � p�2: anomalously large vibrations ! correlated vibrations, soft modes

Ignoring the Gardner transition leads to  = 1, wrong!

[Ikeda, Berthier, Biroli, JCP 138, 12A507 (2013)]
[Charbonneau, Kurchan, Parisi, Urbani, FZ, arXiv:1310.2549]
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Predictions of the theory, and numerical tests Critical scaling at jamming

Pair correlation at jamming

IIIbIb IIb

� +O(p�µ)�

Z(r)

r

⇠ ��µ ⇠ ��0⇠ ��

z̄

0.0

0.2

0.4

0.6

0.8

1.0

Z
(r
)/
2d

10�2 10�1 100 101 102
(r/� � 1)p

p=105–1012

0

2

4

6

8

10

0

2

4

6

8

10

Z
(r
)

10�12 10�9 10�6 10�3 100
r/� � 1

Predictions for the scaling of pair correlation g(r) and Z(r) = d 2d�
R r
0 ds sd�1g(s)

Three regimes: I contacts, II matching, III small gaps

Contact regime: Z(r) = 2dZ[(r � �)/�p]

Z(�) = 1�
R1
0 df P(f )e��f

P(f ) ⇠ f ✓ $ Z(�!1) ⇠ 1� ��1�✓ with ✓ = 0.4231

Z(r > �) ⇠ 2d + (r � �)1�↵ with ↵ = 0.413

[Charbonneau, Corwin, Parisi, FZ, PRL 109, 205501 (2012)]
[Charbonneau, Kurchan, Parisi, Urbani, FZ, arXiv:1310.2549]
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Predictions of the theory, and numerical tests Critical scaling at jamming

Marginal stability and mechanical stability

The exponent ✓ describes small forces: contacts that break first

The exponent ↵ describes quasi-contacts: contacts that form first

These exponents play a crucial role for the mechanical stability of random packings
[Wyart, PRL 109, 125502 (2012)]

Neglecting the Gardner transition gives ✓ = 0 and ↵ = 1: plain wrong!

Taking into account the Gardner transition gives the correct values: amazing!

Marginal stability, isostaticity and mechanical stability are intimately connected
[Charbonneau, Kurchan, Parisi, Urbani, FZ, arXiv:1310.2549]
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Predictions of the theory, and numerical tests The large d packing problem

The packing problem

An elegant mathematical problem with connections to many others (number theory, . . . )

Applications in information & communication theory (coding, . . . )

Applications in physics (granulars, colloids, glasses, . . . )

[Torquato, Stillinger, RMP 82, 2633 (2011)]
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Predictions of the theory, and numerical tests The large d packing problem

The packing problem in large spatial dimension

Best rigorous upper bound
2d'  20.4010... d

Best rigorous lower bound
2d' � (6/e) d
(20 years to gain a factor 3/e!)

Good lattice packings only
known up to d = 128

Lattice packings density seems
to beat the lower bound by an
exponential factor (?)

0 50 100 150d
1

1e+07

1e+14

1e+21

2d
ϕ

densest known packing
Ball lower bound (1992)
Vance lower bound (2011)
Rogers upper bound (1958)
Cohn&Elkies upper bound (2010)
GCP from replicas

Non-rigorous replica result: amorphous packings exist for '  2�d d log d

Non-rigorous replica result: amorphous packings can be constructed in polynomial time in
N for '  7.4 d 2�d , via simulated annealing

Any rigourous justification of these results
would be extremely welcome by the mathematical community

[Parisi, FZ, RMP 82, 789 (2010)]
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Predictions of the theory, and numerical tests Random close packing of binary mixtures

Random close packing of binary mixtures
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All packings are predicted to be globally isostatic
Partial contact numbers are almost independent of 'j

[Biazzo, Caltagirone, Parisi, FZ, PRL 102, 195701 (2009)]
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Predictions of the theory, and numerical tests Summary

Results: summary

The d =1 phase diagram is qualitatively realized in finite d
Quantitative computation are possible, in progress

MCT-like dynamics at the glass transition, exponents can be computed

Critical properties of jamming are obtained only by taking into account the Gardner
transition to a marginal phase
Analytic computation of the non-trivial critical exponents ↵, ✓,

New (non-rigorous, but constructive) bounds on the packing problem in large d

Extension to binary mixtures: prediction of jamming density and partial contacts

THANK YOU FOR YOUR ATTENTION
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