Antoine Letessier-Selvon Laboratoire de Physique Nucléaire et des Hautes Énergies UPMC/IN2P3

The Pierre Auger Observatory

French contributions to :

- Construction
- Analysis
- Upgrades

THE WORLD'S LARGEST COSMIC RAY OBSERVATORY

Collaboration : ~ 500 members & 19 countries Argentina **Australia** Brazil **Bolivia*** Croatia **Romania**^{*} **Czech Republic** Vietnam* France *Associated Germany Italy Mexico **Netherlands** Poland Portugal Slovenia Spain **United Kingdom** USA Full members Pierre Auger Associate members Observatory

DETECTION PRINCIPLES

STATUS & PERFORMANCE

The world's largest cosmic ray observatory In operation since 2004

STATUS & PERFORMANCE

The world's largest cosmic ray observatory

THE HYBRID **CONCEPT ALLOWS FOR A DATA-DRIVEN CALIBRATION OF THE ~100% DUTY CYCLE SURFACE ARRAY USING THE** CALORIMETRIC **INFORMATION** FROM THE **FLUORESCENCE TELESCOPES**

Technical contributions

Design and Site

- * Design phase 1992-1996
- * Site search 1995-1997
- Money hunting (not only in France...) 1996-1999

Electronics & Timing

- PMT bases
- * Time tagging (10 ns resolution)
- Unified board

Local and Central DAQ

Local station software

- Acquisition
- Monitoring
- Calibration
- Communication

* Central Acquisition CDAS

- * Trigger
- Control
- Event builder
- Monitoring
- Reconstruction / visualisation / Analysis tools

Network and Data distribution

- Collection (backbone) Network
- * Data Mirroring (CC-IN2P3)
- * MC prod (GRID)
- * Auger Access

THE AUGER ALL-PARTICLE FLUX

PIERRE

Antoine Letessier Selvon (CNRS/UPMC)

THE AUGER ALL-PARTICLE FLUX

PIERRE

Antoine Letessier Selvon (CNRS/UPMC)

PHOTONS AND NEUTRINOS ?

Current Auger limits rule out top-down models as dominant production of UHECR

ES method paper (SAL) 170 citations

Antoine Letessier Selvon (CNRS/UPMC)

PHOTONS AND NEUTRINOS ?

Current Auger limits rule out top-down models as dominant production of UHECR

Antoine Letessier Selvon (CNRS/UPMC)

Antoine Letessier Selvon (CNRS/UPMC)

Large scale first harmonic analyses

Data up to December 31st 2012

Large scale first harmonic analyses

Antoine Letessier Selvon (CNRS/UPMC)

VCV CORRELATION

SUMMARY

AUGER PROVIDES A WEALTH OF HIGH QUALITY DATA

WE OBSERVE A COHERENT BEHAVIOR OF OBSERVABLES

WHERE TO GO FROM HERE ?

Run Auger until 2023 (+10 years) with a detector upgrade that allows us to do mass composition analysis on an event by event basis

Elucidate the origin of the cut-off

this will allow for reliable estimates of neutrino and gamma fluxes

Search for a proton contribution in the cut-off

with a sensitivity to a fraction of 10% of proton

Prospect for proton astronomy with future detectors will be determined

Study of extensive air showers and hadronic multi-particle production

Includes search for new physics

Elucidate the origin of the Ankle

Search for cosmogenic photons

Huege (661), Schröder (899), Gaïor (883)

RADIO DETECTION

Antoine Letessier Selvon (CNRS/UPMC)

LSD

Principle & design

Distribution of the Cherenkov photons production point in a 1.2 m height and 1.6 m radius WCD. From left to right the contribution from the photons, e⁺e⁻ and muon component of a 30 EeV EAS with 45° zenith angle is shown.

LSD design side, top and 3D view.

Principle

Simple - Universal - Robust After segmentation

fraction a of e/γ p.e. are collected in the top segment

fraction b of µ p.e. are collected in the top segment

$$\begin{pmatrix} S_{top} \\ S_{bot} \end{pmatrix} = M \begin{pmatrix} S_{em} \\ S_{\mu} \end{pmatrix} = \begin{pmatrix} a & b \\ 1-a & 1-b \end{pmatrix} \begin{pmatrix} S_{em} \\ S_{\mu} \end{pmatrix}$$

For 40/80 cm a=0.6 and b = 0.4

Same after the matrix inversion to get EM and muonic LDFs

