

NuSTAR

Didier Barret &

Peter von Ballmoos

Institut de Recherche en Astrophysique et Planétologie (IRAP)

NuSTAR: the first focusing hard X-ray satellite

Coded Aperture Optics:

- large detector
- high background limiting sensitivity

Focusing Optics:

- compact detector
- low background, high sensitivity

02/04/2014

NuSTAR Facts

- PI: Fiona Harrison (Caltech)
- Project Scientist: Daniel Stern
- Hard X-ray Optics
 - glass slumping (GSFC)
 - multi-layer coatings (Denmark Technical University)
 - assembly and calibration (Columbia)
- Deployable Mast (10 m)
 - ATK (Alliant Techsystems Inc.)
- Detectors
 - CdZnTe with 0.6 mm pixels (Caltech)
- Significant contributions from Italy

Energy Range:	~3-78 keV	
Angular Resolution:	58 arcsec (HPD) 18 arcsec (FWHM)	
Field of View:	10 arcmin @ 10 keV 6 arcmin @ 68 keV	
Spectral Resolution:	400 eV at 6 keV 900 eV at 68 keV	
Timing Resolution:	0.1 msec (absolute) 2 microsecond (relative)	
Sensitivity (3σ, I Ms):	2 x 10 1 x 10	
ToO Response:	<24 hr	
Launch Date:	13 June 2012 on a Pegasus from Kajelein	
Orbit:	6 degree inclination 650 km x 610 km	
Mission Lifetime: Orbit Lifetime:	2 years baseline >7 years orbit lifetime	

Harrison+13

02/04/2014

Outstanding performance

NuSTAR vs. other missions

NuSTAR vs. other missions

Satellite (instrument)	Sensitivity
INTEGRAL (ISGRI)	~0.5 mCrab (20-100 keV) with >Ms exposures
Swift (BAT)	~0.8 mCrab (15-150 keV) with >Ms exposures
NuSTAR	~0.7 μCrab (10-30 keV) in 1 Ms

Courtesy John Tomsick

Figure and table: RXTE and Suzaku rates are those measured for the accreting BH GX 339-4 in the hard state at $5.3x10^{-11}$ erg/cm²/s (2-10 keV) and L/L_{Edd} = 0.14%.

Satellite	Source rate	Background rate
RXTE	17 c/s	56 c/s
(PCA)	(5-50 keV, 3 PCUs)	(5-50 keV, 3 PCUs)
Suzaku	0.21 c/s	0.35 c/s
(HXD/PIN)	(15-60 keV)	(15-60 keV)
NuSTAR	2.6 c/s (5-80 keV)	0.008 c/s (5-80 keV)

NuSTAR Baseline Science Plan (first 2 years)

The observing plan for the 2 year baseline mission is being designed by the Science Team to address the following questions:

Question #1: How are black holes distributed through the cosmos, and how do they affect the formation of galaxies?

Question #2: How are stellar remnants distributed within the Galaxy and near the Galactic center?

Question #3: How do stars explode and forge the elements that compose the Earth?

Question #4: What powers the most extreme active galactic nuclei?

Supernova Remnants

- Constraining the synchrotron spectrum
 - particle acceleration and the origin of cosmic rays
- 68 keV ⁴⁴Ti emission line
 - Amount and distribution of ⁴⁴Ti function: function of SN type (la or core collapse) and symmetry of the explosion
- clumps at the core —> mild asymmetries scenario

$$\rightarrow$$
 red = Fe

-> green = Si + Mg

—> blue = Ti

Galactic center with NuSTAR

Chandra

- 0.5-8 keV
- Wang et al. (2002); Muno et al. (2004, 2006, 2009)

INTEGRAL

- 20-60 keV
- Belanger et al. (2005)

NuSTAR simulation

- 5-80 keV
- Detection limit ~2x10³³ erg/s at 8 kpc

Ultraluminous X-ray sources

 What powers ULXs? What feeds them? Which emission processes dominate (e.g. origin of the power law, comptonization, reflection, ..)? Is beaming important? How do they compare to galactic X-ray binaries (e.g. ULX QPOs)?

- clear cutoff above 10 keV
- ULXs harbor small, stellar-mass black holes (70-100 Msol)
- Accreting at Eddington rate

IRAP contribution

- A high count rate detector for optics calibration -100s kcts/s
 - Large area Silicon Drift Detector (heritage from IXO-HTRS)
 - Digital shaper Digitization of the signal at the output of the charge amplifier by a fast ADC and energy recovery through FPGA (fast and slow triggers) enical mounting of the diade (on the right) and power supply board (on the left)

- R&T funding by CNES (IXO-HTRS) contract)
- IRAP team: D. Barret., P. Von Balmoos, D. Rambaud, G. Ortner, W. Marty, K. Lacombe

box with the 2 boards)

Summary and Conclusions

- NuSTAR is an extremely powerful hard X-ray observatory
 - Black Holes
 - Supernovae explosions
 - galactic sources populations
 - Neutron Stars
 - Relativistic Jets
 - Sun
- NuSTAR provides:
 - ~3 orders of magnitude in hard X-ray sensitivity for studies
 - imaging of extended objects like SNRs and reflection nebulae
- Mission of opportunity. French contribution via IRAP.
 - DB is a NuSTAR science team member

02/04/2014