GWHEN joint analyses

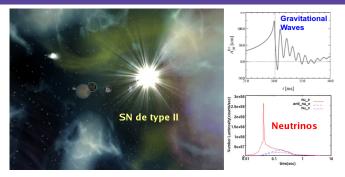
using Antares and LIGO/Virgo data

590

GWHEN joint analyses

using Antares and LIGO/Virgo data

Thierry Pradier for the LIGO Scientific Collaboration, Virgo Collaboration and Antares Collaboration


▲□▶ ▲□▶ ▲三≯ ▲三≯ 三 シックや

Detectors and Concomittant Data Taking

Joint Source

Time Window for coincidences

An example of GW- ν Coincidences : Type II SN

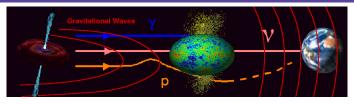
Type II SN

•
$$m_{\nu} \neq 0: \delta t_{\text{propagation}} \simeq 5.15 ms \left(\frac{L}{10 k \rho c}\right) \left(\frac{m_{\nu} c^2}{1 eV}\right)^2 \left(\frac{10 MeV}{E_{\nu}}\right)^2$$

•
$$E_{
u}^{SN} \sim MeV$$
, $\delta t_{
m GW-
u_e^{flash}} \lesssim 0.5$ ms

 \Rightarrow Limits on ν absolute mass scale from $\Delta t_{GW-\nu}$

N. Arnaud et al., Phys.Rev. D65 (2002) 033010


Th. Pradier (University of Strasbourg & IPHC)

GWHEN searches with Antares and LIGO/Virgo » PARIS, JUNE 2014

2 / 25

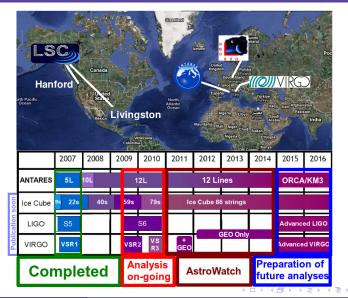
Introduction		

GWHEN

Gravitational Waves + High Energy Neutrinos (HEN)

- 1 Sources invisible in photon ? : Dark Bursts
- 2 Coincident Detection *validate* both detections
- 3 Unique Information on internal processes : accretion-ejection...
- 4 Fundamental Physics? :

• Quantum Gravity :
$$c^2 p^2 = E^2 \left[1 + \xi \left(\frac{E}{E_{QG}} \right) + \mathcal{O} \left(\frac{E^2}{E_{QG}^2} \right) + \dots \right]$$

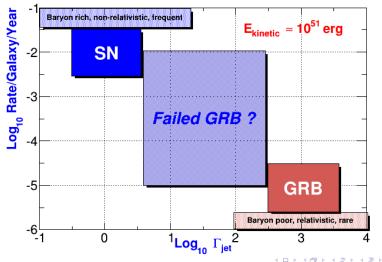

$$\Rightarrow \ |\Delta t_{QG}| \simeq 0.15 ms \left(\frac{d}{10 \ kpc}\right) \left(\frac{E_{\nu}^{HE}}{1 \ TeV}\right) \left(\frac{10^{19} \ GeV}{E_{QG}}\right) \ {\rm pour} \ z \ll 1$$

S. Choubey & S. F. King, Phys. Rev. D67 (2003) 073005

Th. P., NIM A 602-1 (2009) 268-274

Detectors and Concomittant Data Taking

GW interferometers and HEN Telescopes

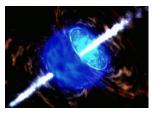

Th. Pradier (University of Strasbourg & IPHC)

« GWHEN searches with Antares and LIGO/Virgo » PARIS, JUNE 2014

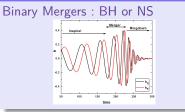
4 / 25

« Golden » Targets : Gamma-Ray Bursters (GRBs)

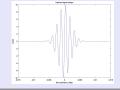
From SN to GRBs (Ando, 2009)



Introduction


Detectors and Concomittant Data Taking

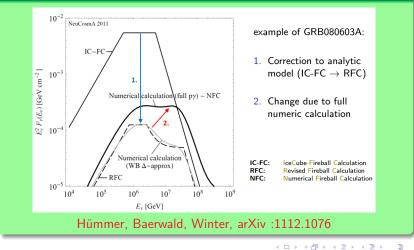
« Golden » Targets : Gamma-Ray Bursters (GRBs)



Short GRBs

Long GRBs

Collapsars - massive star collapse

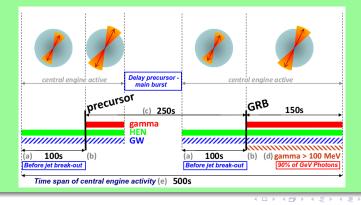


No Neutrinos? CECUBE results (2012)

Time Window for coincidences

« Golden » Targets : Gamma-Ray Bursters (GRBs)

HEN Spectra from Guetta et al. (2004)...outdated?

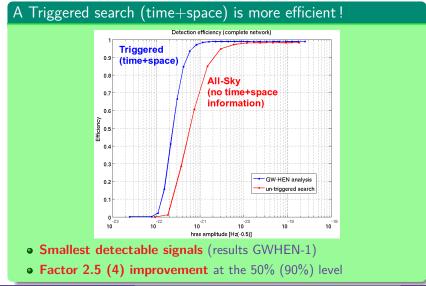

tors and Concomittant Data Taking

Joint Sourc

Time Window for coincidences

Time Window from long GRB observations

- Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts
- B. Baret et al., Astroparticle Physics 35 (2011) 1-7
 - $\Rightarrow \Delta T = \pm 500 s$ [arXiv:1101.4669]

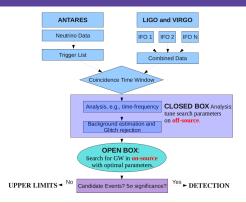


tectors and Concomittant Data Taking

Joint Source

Time Window for coincidences

Advantages of a triggered search


Th. Pradier (University of Strasbourg & IPHC)

540

Horizon and Results

GWHEN-1 Strategy

1^{st}_{GWHEN} search : joint data

Analysis of 2007 data - Jan 27 - Sept. 30, 2007

- Sub-optimal detectors : no optimization usual HEN selection
- Time provided by HEN candidate 158 HEN in total
 - \Rightarrow 10% at $< E_{
 m HEN} > \approx$ 100*TeV*
- Position by HEN direction \pm Error Box = $f(E_{\text{HEN}}, \delta)$

Th. Pradier (University of Strasbourg & IPHC)

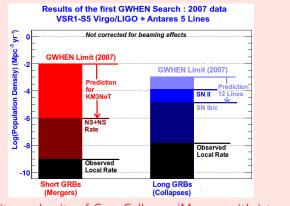
« GWHEN searches with Antares and LIGO/Virgo » PARIS, JUNE 2014

940

GWHEN-1 Strategy

Detection probabilities vs distance

GW and HEN Horizons

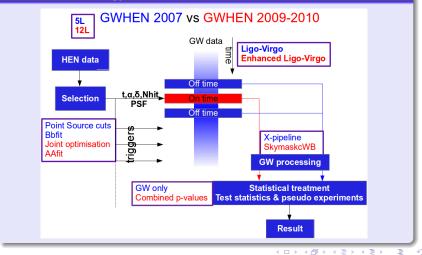

- $P_{\text{HEN}}, P_{\text{GW}}$ vs $d \Rightarrow$ joint analysis' Horizon \Rightarrow Typically 1-10 Mpc, HEN limited
- From null observation, derive limit on $ho_{\rm GWHEN}$ at 90% C.L. :

$$ho_{
m GWHEN} \leq rac{\mathbf{2.3}}{\mathbf{V}_{
m GWHEN}\mathbf{T}_{
m obs}}$$

GWHEN-1 Strategy

GWHEN-1 density limits

Encouraging results


- First limits on density of Core-Collapses/Mergers with jets
- ArXiV :1205.3018, JCAP 06 (2013) 008

Th. Pradier (University of Strasbourg & IPHC)

10 / 25

Optimization of the Analysis

A different strategy

Th. Pradier (University of Strasbourg & IPHC)

« GWHEN searches with Antares and LIGO/Virgo » PARIS, JUNE 2014

11 / 25

ANTARES 12 lines + VSR2-3/S6 - Jul. 2009, Oct. 2010

- New GW Software (suitable for joint simulations)
- New HEN reconstruction strategy (error boxes : $10^\circ \rightarrow 2^\circ$)

Maximize the number of detectable sources $\propto \frac{\epsilon_1}{a}$

< ロ > < 同 > < 回 > < 回 >

HEN and GW inputs

ANTARES 9 & 12 lines

Jul 7, 2009 to Oct 20, 2010 ~260 days, 129 days jointly with LV

Preliminary Results

1986 HEN candidates ~30% with 2-3 IFO

HEN selection

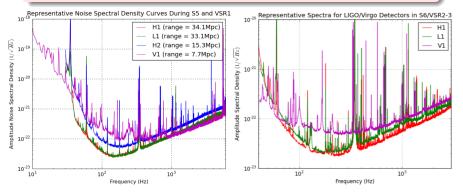
• Cuts on the quality muon track reconstruction and energy

Joint optimization

- Maximize # of detectable sources
- HEN: WB GRB diffuse flux

Event by event characterization

- Angular error (ASW₉₀)
- Fit of PSF
- Number of hits (energy)

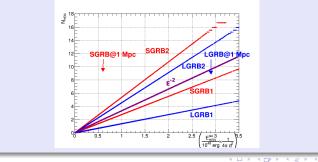

1986 high-energy neutrino candidates, ANTARES 2009/2010

くぼう くほう くほう

HEN and GW inputs

GW sensitivities and common observation time

- Enhanced sensitivities for low and high $f_{
 m GW}$
- 30% increase in $T_{\rm obs}$

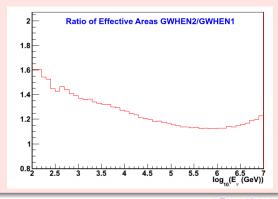

くぼう くほう くほう

The volume depends on $P_{\rm GW}$ and $P_{\rm HEN}$

$P_{ m GW}$ and $P_{ m HEN}$

•
$$\rho_{\text{GWHEN}} \leq \frac{2.3}{V_{\text{GWHEN}} T_{\text{obs}}}$$
 with $V_{\text{GWHEN}} = 2\pi \int_0^\infty P_{\text{GW}} P_{\text{HEN}} r^2 dr$
• P_{GW} vs $h_{\text{rss}} = \sqrt{\int (h_+^2(t) + h_\times^2(t)) dt} \propto \frac{\sqrt{E_{\text{GW}}^{\text{iso}}}}{d}$

• $P_{\text{HEN}}(N_{\text{HEN}} \ge 1) = 1 - e^{-N_{\text{HEN}}(E_{\text{HEN}}^{\text{iso}})} = 1 - \exp^{-k_{\text{model}}\frac{E_{\text{HEN}}^{\text{iso}}}{4\pi d^2}}$

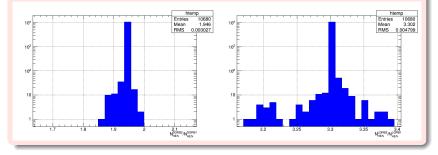


GWHEN-2 expected Results

Performances GWHEN-1 vs GWHEN-2

Probed Volume improved by a factor 5

- Better HEN sensitivity \Rightarrow Improvement of factor 2-3 in $N_{\rm HEN}$
- Optimization allows to have equivalent HEN and GW horizons
 - \Rightarrow Factor 8 on $R_{\rm ul}$ (/Mpc³/yr) wrt GWHEN-1



GWHEN-2 expected Results

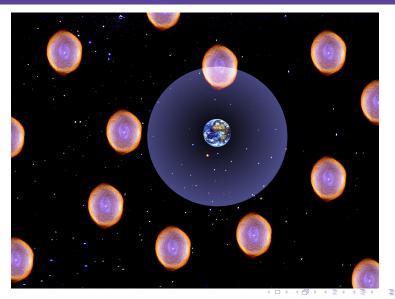
Performances GWHEN-1 vs GWHEN-2

Probed Volume improved by a factor 5

- Better HEN sensitivity \Rightarrow Improvement of factor 2-3 in $N_{\rm HEN}$
- Optimization allows to have equivalent HEN and GW horizons
 - ⇒ Factor 8 on $R_{\rm ul}$ (/Mpc³/yr) wrt GWHEN-1

くぼう くほう くほう

Introduction


1st LV-Antares GWHEN Searc

2nd LV-Antares GWHEN Search

GW and HEN Radiation Beaming

GWHEN-2 expected Results

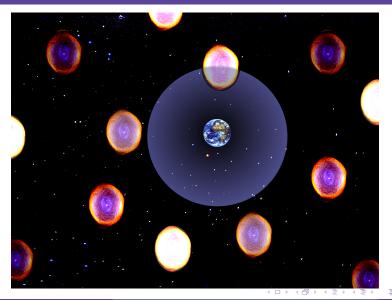
ANTARES 5L : fixed $E_{\rm GW}^{\rm iso}$, $E_{\rm HEN}^{\rm iso}$ + beaming f_b

Th. Pradier (University of Strasbourg & IPHC)

16 / 25

Introduction

1st LV-Antares GWHEN Searc


GW and HEN Detection Probab

2nd LV-Antares GWHEN Search

GW and HEN Radiation Beaming

GWHEN-2 expected Results

$\mathrm{IC22}/\mathrm{59}/\mathrm{79}$: varying $\mathit{E}_{\mathrm{GW}}^{\mathrm{iso}}$, $\mathit{E}_{\mathrm{HEN}}^{\mathrm{iso}}$ + beaming $\mathit{f_b}$

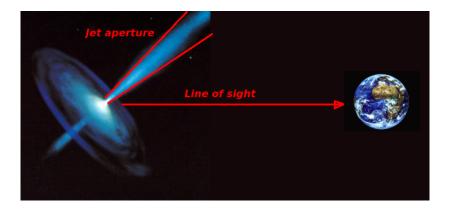
1st LV-Antares GWHEN Search

1.12P. OW 110

2nd LV-Antares GWHEN Search

V and HEN Radiation Beaming

ANTARES 12L : varying $E_{\rm GW}^{\rm iso}$, $E_{\rm HEN}^{\rm iso}$ + param. of beaming



2nd LV-Antares GWHEN Search and HEN Radiation Beaming

Conclusions

GWHEN-2 expected Results

Jet aperture and line of sight

Th. Pradier (University of Strasbourg & IPHC)

« GWHEN searches with Antares and LIGO/Virgo » PARIS, JUNE 2014

イロト イヨト イヨト イヨト

19 / 25

э

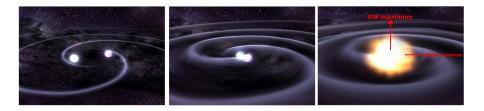
HEN are beamed

Assume Gaussian profile for HEN emission

- $\Phi_{\text{HEN}}(\theta) \propto e^{-\frac{\theta^2}{2\sigma_{\text{HEN}}^2}}$, with θ = angle (jet, line of sight)
- $\bullet\,$ For Low-luminosity GRBs, $\sigma_{\rm HEN}\approx 30^\circ,$ beaming factor $f_b\sim 14$
- Normal GRBs, $\sigma_{
 m HEN} pprox 10^\circ$ (depends on Γ), beaming factor $f_b \sim 100$

lsotropic equivalent HEN energy ${\it E}_{ m HEN}^{ m iso}$

• ...also convoluted with $e^{-\frac{\theta^2}{2\sigma_{\text{HEN}}^2}}$


⇒ Maximum for $\theta = 0$, minimum for $\theta = 90^{\circ}$

• Average on θ : $\langle E_{\text{HEN}}^{\text{iso}} \rangle_{\theta} \approx \frac{E_{\text{HEN}}^{\text{iso}}}{2\sqrt{\pi}} \left(1 - \frac{1}{2} e^{-\frac{\pi^2}{12\sigma_{\text{HEN}}^2}} \right)$

 $\Rightarrow\,$ Can be computed for any assumed $\sigma_{\rm HEN}$

• Average on σ_{HEN} : $\langle E_{\text{HEN}}^{\text{iso}} \rangle_{\theta,\sigma_{\text{HEN}}} \approx \frac{2\sqrt{\pi}}{15} E_{\text{HEN}}^{\text{iso}}$

GW emission and line of sight

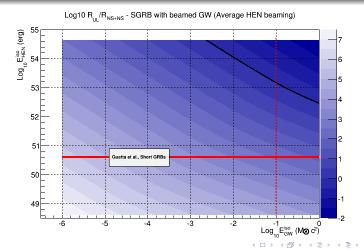
イロト イヨト イヨト イヨト

2

	2nd LV-Antares GWHEN Search	
	GW and HEN Radiation Beaming	

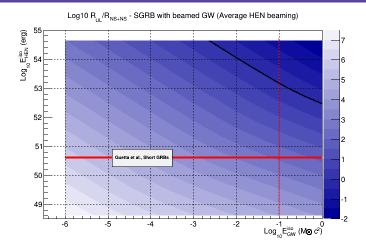
GW beaming

Examples of different GW signals

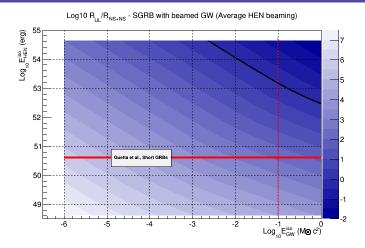

- Binary mergers : $h_+ \propto 1 + \cos^2 \theta$, $h_{\times} \propto \cos \theta$
 - $\Rightarrow~\theta$ angle between line of sight and axis of rotation
- Core-Collapse : no clear pattern?
 - $\Rightarrow\,$ For neutrino-driven GW, $h\propto\cos\theta$
- Bursts with memory from jets : anti-beaming !

Consider fraction of GW Energy in direction of HEN jet

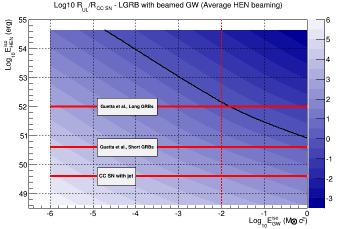
- For Beamed GW, consider $h \propto 1 + \cos^2 \theta$ as typical
 - $\begin{array}{l} \Rightarrow \mbox{ Fraction of GW energy } \| \mbox{ to HEN jet in cone } \pm \sigma_{\rm HEN} : \\ \eta_{\rm jet} = \frac{2}{3\pi} (3\sigma_{\rm HEN} + \frac{1}{2}\sin 2\sigma_{\rm HEN}) \\ \Rightarrow \ \langle \eta_{\rm jet} \rangle_{\sigma_{\rm HEN}} \approx 0.6 \end{array}$
- Anti-Beamed GW, consider $h \propto \sin^2 \theta$ as typical $\eta_{\text{jet}} = \frac{2}{\pi} (\sigma_{\text{HEN}} - \frac{1}{2} \sin 2\sigma_{\text{HEN}})$ $\Rightarrow \langle \eta_{\text{jet}} \rangle_{\sigma_{\text{HEN}}} \approx 0.3$


Possible results for Short GRBs vs NS+NS rates

With all-sky $P_{\rm GW}$ vs $h_{\rm rss}$ (153 Hz) from Phys. Rev. D 85, 122007 (2012)


Possible results for Short GRBs vs NS+NS rates

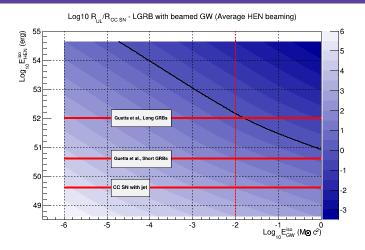
⇒ Constrain fraction of NS+NS with jets for ultra-luminous events? (Black curve : $R_{\rm UL}/R_{\rm NS+NS} = 1$, with $R_{\rm NS+NS} = 10^{-5}/Mpc^3/yr$)


Possible results for Short GRBs vs NS+NS rates

• For Binary Mergers, maximum $E_{\rm GW}^{\rm iso} \approx 10^{-1} M_{\odot} c^2$ • $E_{\gamma}^{\rm iso} \sim 10^{54} erg$ = Naked-Eye GRB !

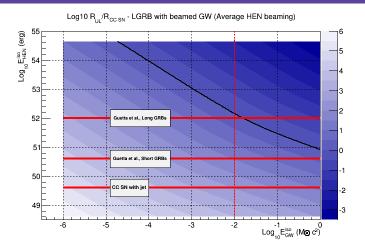
Possible results for Long GRBs vs CC SN rates

With all-sky $P_{\rm GW}$ vs $h_{\rm hrss}$ (153 Hz) from Phys. Rev. D 85, 122007 (2012)



 Introduction
 1st LV-Antares GWHEN Search
 2nd LV-Antares GWHEN Search
 Concle

 Strategy
 GW and HEN Detection Probability
 GW and HEN Realiation Beaming
 GWHEN-2 expected Res


Possible results for Long GRBs vs CC SN rates

⇒ Constrain fraction of CC SN with jets with Guetta normalization? (Black curve : $R_{\rm UL}/R_{\rm CC SN} = 1$, with $R_{\rm CC SN} = 5 \times 10^{-4}/Mpc^3/yr$)
 Introduction
 1st LV-Antares GWHEN Search
 2nd LV-Antares GWHEN Search
 Concl

 Strategy
 GW and HEN Detection Probability
 GW and HEN Readiation Beaming
 GWHEN-2 expected Res

Possible results for Long GRBs vs CC SN rates

• But for Core-Collapses, maximum $E_{\text{GW}}^{\text{iso}} \approx 10^{-2} M_{\odot} c^2$ \Rightarrow At limit of physically relevant region with triggered-search P_{GW} ?

Th. Pradier (University of Strasbourg & IPHC)

« GWHEN searches with Antares and LIGO/Virgo » PARIS, JUNE 2014

24 / 25

Encouraging expected results

A huge improvement wrt GWHEN-1

- Improvement of factor 2-3 in N_{HEN} wrt GWHEN-1
 ⇒ Factor 8 on R_{ul} (/Mpc³/yr) wrt GWHEN-1
- Proposal for different GW and HEN beaming parametrization in GWHEN-2, beyond beaming parameter *f*_b
- NS+NS rates :
 - ⇒ Possibility to constrain fraction of NS+NS mergers with jets for ultra-luminous events only?
- Core-Collapse SN rates :
 - ⇒ LGRB : possibility to constrain fraction of CC SN with jet with typical LGRB parameters (just at the limit $E_{\text{GW}}^{\text{iso}} = 10^{-2} M_{\odot} c^2$)

< □ > < 同 > < 三 > < 三 >

Encouraging expected results

Improvements

- First, wait for box-opening !
- Under review within LIGO-Virgo
- Include NeuCosmA typical spectrum in the limits
 - ⇒ Smaller normalization
 - ⇒ Higher energies

Future

- GWHEN with ANTARES (if extended \rightarrow 2016), KM3NET(2016-2018) and Advanced LIGO/Virgo
 - \Rightarrow Possibly as soon as 2015 (aLIGO)?
 - \Rightarrow 2016-2017 both aLIGO and aVirgo?

< □ > < 同 > < 三 > < 三 >