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Outline:

1. Particle acceleration and relativistic collisionless shocks

2. Microphysics of gamma-ray burst afterglows



General principles of particle acceleration

Standard lore:
— Lorentz force: F = ¢ (E + Y B)
c

— near infinite conductivity: E;, ~ 0 in plasma rest frame

4 : C : v
— Efield is 'motional’, i.e. if plasma moves at velocity v,;: E ~ —L2 xB
c

— acceleration through interactions with moving magnetized centers

— need some force or scattering to push particles across B

— examples: - turbulent Fermi acceleration

- Fermi acceleration at shock waves _Qgﬂv&&

- acceleration in sheared velocity fields

- magnetized rotators —_— 5™

L

Beyond MHD:

: B
— examples: - reconnection %

- wakefield/ponderomotive acceleration




Acceleration to UHE in gamma-ray bursts fireballs

external
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internal shock
shocks

ro ~ 108 cm
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Relativistic Fermi acceleration - small scale turbulence T
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X ) shock
Test particle picture: :

— particles gain energy by bouncing across the shock front, — =

. : - () c/3
exploiting the convective electric fields: 6F = —— x B Pan /
C Ysh >1

— if v, >> 1, advection beats acceleration unless particles

scatter in small-scale turbulence A <r,, 6B>Band r, <A oB/B

(r, gyroradius of accelerated particles, A length scale of 0B)
(ML et al. 06, Niemiec et al. 06, Pelletier et al. 09)



Relativistic Fermi acceleration - small scale turbulence T
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X ) shock
Test particle picture: :

— particles gain energy by bouncing across the shock front, — =

. : - () c/3
exploiting the convective electric fields: 6F = —— x B Pan /
C Ysh >1

— if v, >> 1, advection beats acceleration unless particles

scatter in small-scale turbulence A <r,, 6B>Band r, <A oB/B

(r, gyroradius of accelerated particles, A length scale of 0B)

Fac _ & 0 < e (Awp/o)’
(ML et al. 06, Niemiec et al. 06, Pelletier et al. 09)

weak magnetization!




Relativistic Fermi acceleration - small scale turbulence |

: : shock s
Test particle picture: :

— particles gain energy by bouncing across the shock front, — =
exploiting the convective electric fields : 6 F = v x 0B B c/3
C Ysh >1

— if v, >> 1, advection beats acceleration unless particles

scatter in small-scale turbulence A <r,, 6B>Band r, <A oB/B

(r, gyroradius of accelerated particles, A length scale of 0B)
(ML et al. 06, Niemiec et al. 06, Pelletier et al. 09)

weak magnetization!
PIC simulations: /

(e.g. Spitkovsky 08, Nishikawa et al. 09, Martins et al. 09, Sironi & Spitkovsky 09, 11, 13, Haugbolle 11)
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Micro-instabilities at a relativistic shock front EU IR
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— shock reflected and shock accelerated particles move in upstream background field with
Lorentz factor 7,2, along shock normal, forming
an unmagnetized beam of Lorentz factor 7,2 and opening angle 1/~,,

— leading instabilities at ultra-relativistic shocks:

Weibel/filamentation (e.g. Medvedev & Loeb 99): anisotropic instability
at low magnetization, builds up 6B starting from zero B

current-driven (ML et al. 14a, 14b): driven by the gyration current around B,
works at moderate magnetization

— main limitation: very short precursor, length ~ r o/v* ~ v, c/wy

— many other potential instabilities at mildly relativistic shock waves (MHD regime)



Phase diagram for relativistic shock acceleration o
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Caveats and open questions

T
'A:.Jf %
Most PIC simulations have not converged to a stationary state! (Keshet et al. 09)
" i1 late times
- I P
e "‘w....,,m 1 IV ti
I()’J ~So early times

-1000 500 0 Ax/(c/e) 590 1000
gg = 0B2 / (8w 2y,,2 n, m C?)

— Keshet et al. 09: time = 104 o)p'1 < ~ 0.1% of a dynamical timescale for a GRB!

— theoretical extrapolation is needed!

Main open questions:

— phase space still largely unexplored... mildly relativistic shocks = terra incognita
— high energy particles stream further away and modify the precursor: how?
— other instabilities on larger (MHD?) scales?

— acceleration at magnetized shocks, e.g. PWNe up to y, ~ 10°?



Relativistic Fermi acceleration - unmagnetized limit

3 o o
PIC simulations:
(e.g. Spitkovsky 08, Nishikawa et al. 09, Martins et al. 09, Sironi & Spitkovsky 09, 11, 13, Haugbolle 11)
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— supra-thermal particles stream ahead of the shock and excite plasma instabilities
(Weibel/filamentation, two-stream, current-driven etc.), which build §B...

— 0B builds a magnetic barrier (~ 10% of equipartition) which mediates the shock transition...
— 0B on c/wp scales provides the scattering required for acceleration...

— 0B provides the turbulence in which particles radiate (?) (Medvedev &Loeb 99)



. Maximum energy s

Maximum energy:
— scattering in small scale turbulence A < r, is not as efficient as Bohm...
— max energy for electrons by comparing t, . ~ t.. to synchrotron loss, with
tocae ~ Fg°/(Ac) and A ~ 10 c/w,, implies a maximum synchrotron photon energy:
(e.g. Kirk & Reville 10, Plotnikov et al. 13, Wang et al. 13, Sironi et al. 13):
1/4 1/2 \2/3 —1/12 ,—3/4
€y,max =~ 2GeV E5i 519/,—2)\1/ U / tobs/,Q
— long-lived GeV emission on 1000sec can result from synchrotron afterglow
(Kumar & Barniol-Duran 09, 10, Ghisellini et al. 10)
... photons above 10GeV result from IC interactions... (Wang et al. 13)
—  |GRB130427A |
| upy:
. | ¢ IC;
in GRB130427A: P L.,
g = RS 0/‘/-
| X1 t,ps =138-750 sec
two spectral components with " P AN
€max ~ GeV at 100-1000 sec | A synchrotron |+
for the synchrotron afterglow... = v L — et
~ / ® o — \
P o ]
©
pY \
L \
100 MeV 1GeV € 10 GeV 100 GeV

" Liu et al. 13



Evolution of turbulence in GRB blast waves
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Theory vs observations/phenomenology: :

— comparison between theory, PIC sims. and GRB phenomenology overall satisfactory:
electrons are heated to y;, = v, m,/m, ~ 10°,
to near equipartition ¢, ~ 0.1-0.5 ... with a power-law tail of index s ~-2.2
magnetized turbulence is excited up to g; ~ 0.01 (canonical value !?)



Evolution of turbulence in GRB blast waves s

v o.

Theory vs observations/phenomenology:

— comparison between theory, PIC sims. and GRB phenomenology overall satisfactory:
electrons are heated to y;, = v, m,/m, ~ 10°,
to near equipartition ¢, ~ 0.1-0.5 ... with a power-law tail of index s ~-2.2
magnetized turbulence is excited up to g; ~ 0.01 (canonical value !?)

— actually, a long-standing notorious problem for g : turbulence lies on

plasma scales c/@,;, and should decay on 100's of c/®,;, whereas observations

probe the width of the blast, many orders of magnitude beyond...

=> origin of the magnetisation of GRB blast waves? (e.g. Gruzinov 99, Gruzinov & Waxman 99)
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Evolution of turbulence in GRB blast waves s
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(ref. frame:
shocked plasma)

how does the turbulence evolve
with distance to shock?

damping or additional source of turbulence?
e.g. Gruzinov & Waxman 99, Medvedev & Loeb 99,
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Evolution of turbulence in GRB blast waves s

(ref. frame:
shocked plasma)
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damping or additional source of turbulence?
e.g. Gruzinov & Waxman 99, Medvedev & Loeb 99, I IO >
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A solution from microphysics:

— particles radiate in a decaying turbulence with (ML 13, ML et al. 13):
§B%(t) ~ 6B%(t = 0) [t/(100c/wpi)]~"°
(t: comoving time since injection through the shock ~ distance to the shock)

— through Landau damping, 0B is indeed expected to decay as power-law
(Chang et al. 08, ML 14):

d (6B?) A3k 5 4 k3¢?
— = =2 B ith (li i ~ —
= / (277)3% 10 By | with (linear) damping rate V& - wg

emax () \ T
— €B (t) ~ €B (t — 0) (k—(O)> with kmax(t)/kmax(o) xt /3



General picture

Blast wave geometry: GRB orders of magnitude (comoving frame):
1
Q\\% radius for afterglow: R ~ 1017 cm
7 Lorentz factor: y, ~ 100
N B field: Bigyy ~ 1 UG (<> €56y~ 107)

--------------------------- > blast width: R / (y, €) ~ 107 o,
gyration: t, ~ &5 ;"2 (Yo/Ypmin) ®,i
COOIing: tsynch ~ 107 88,—2-1 (Ye/Ymin) N ('opi-1
PIC simulations: ~ 10 000 w,;*
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w g canonical afterglow: acceleration zone ~ 100 w,;*
- %, homogeneous B
g —> particles get "instantaneously"
g accelerated to a power-law then
£ cool in microturbulence...
S
]og(comoving time or distance)




General picture
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Blast wave geometry:

GRB orders of magnitude (comoving frame):

radius for afterglow: R ~ 1017 cm
Lorentz factor: y, ~ 100
B field: Bigyy ~ 1 uG (< g5, ~ 107)

--------------------------- > blast width: R / (y, €) ~ 107 o,

gyration: t, ~ &5 ;"2 (Yo/Ypmin) ®,i
COOIing: tsynch ~ 107 88,—2-1 (Ye/Ymin) N ('opi-1
PIC simulations: ~ 10 000 w,;*

vy g5~ 0.01 \Sho%
w lllllllllllllllllllllllllllllllllllllllllll C
80 g canonical afterglow: acceleration zone ~ 100 (Dpi—l
~— | £ | homogeneous B
c
S —> particles get "instantaneously"
ps . accelerated to a power-law then
g turbulence damping: cool in microturbulence...
S decay of g; ¢/3
B —
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Synchrotron spectra in decaying microturbulence
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— decaying turbulence leaves a strong signature in the spectral flux F(t,,.):
modifies slopes and characteristic frequencies...

General trend: (for-1<a,<0)

— flux F, at v comes from electrons with v,: v (y,) = V...

—> v,y 2and t ¢ v, imply that low frequencies are produced in regions of low
magnetic field, high frequencies are produced in regions of strong magnetic field...



Confrontation to observations
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... synchrotron emission of shock accelerated electrons in decaying micro-turbulence
nicely reproduces the afterglows and >100MeV extended emissions of GRBs... (ML et al. 13)

GRB 090902B GRB 090323
>100MeV >100MeV
X-ray X-ray

_4t optical _4 optical
1
g | I
Tgre = 150sec I
1 1 1 L 1 1 L 1 1 1 L L 1 1 ___10 1 1 1 1 1
1 2 3 4 5 6 0 1 2 3 4 5 6 7
logyo(fops) [5] logyo(fops) [s]

E,;~1.6 10> erg E,;~5.410>erg

n~0.012 cm3 n~8.4x10%r" cm?3

€.~0.50,p~23

€,~0.29,p~2.5

(0%
a,~-0.44£010 ez = 0.01 [t/ (10%5)] " o, ~-0.54%0.09



Confrontation to observations
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... synchrotron emission of shock accelerated electrons in decaying micro-turbulence
nicely reproduces the afterglows and >100MeV extended emissions of GRBs... (ML et al. 13)

GRB 090328 GRB 110731A
“T3ieomev >100Mev ,
- X-ray —2[ X-ray
4: optical | optical
_ o
S
%% g’g’ _6j +ﬂ'|'+
&l
:TGRB= 8 sec
10 - -
0 1 2 3 4 5 6
10gy0(ops) [5] logyo(tons) [s]
E;~0.73 x 10> erg E; < 6x10% erg
n~15x1035r cm3 n> 0.1x 103 r” cm3
€,~0.18,p~25 €. <50.04,p~21

0,~-0.48£0.11  ep = 001 |t/ (100w;" )] o< -0350.20



Discussion A
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— a simple solution, which reconciles data and theory, for the problem of the origin of
magnetization in GRB blast waves:

— synchrotron radiation takes place in the partially decayed Weibel turbulence,
which is self-generated at the (ultra-relativistic, unmagnetized) collisionless shock

— 4 GRBs seen in radio, optical, X-ray through >100MeV point to a consistent
net decay power law of the magnetic field downstream of the shock:

055 a,5-0.4

—> values for g5_do not agree with other estimates by Cenko et al. for 090902B, 090323,
090328, or with Ackermann et al. (Fermi Coll.) for 110731A:

difference: these works do not account for >100MeV emission...

... SO 3 constraints for 4 parameters...

degeneracy implies that g5 ~ 0.01 in these works is a choice rather than a result!

— is this even more general? What about earlier determinations of ¢g?
Does the canonical value €; ~ 0.01 hold at all?



Summary - conclusions s

AR

Particle acceleration at relativistic shock waves is intimately connected to the
self-generation of turbulence...

— shock physics in mildly relativistic regime, high or low magnetization,
less ideal conditions remain to be worked out...

— a clearer view in the past decade thanks to PIC simulations (+theory!),
especially at low magnetization

A microphysical solution for the origin of magnetization in GRB blast waves:

— synchrotron radiation takes place in the partially decayed Weibel turbulence,
which is self-generated at the (ultra-relativistic, unmagnetized) collisionless shock

— a broad turbulence power spectrum at the shock leads to a power-law decay:
077
5B2(t) ~ 6B2(t = 0) [t/ (10%3)]

— 4 GRBs seen in radio, optical, X-ray through >100MeV point to a net decay
power law of the magnetic field downstream of the shock: -0.5 < o, S -0.4



