Particle acceleration at relativistic shock waves ... and gamma-ray bursts

Martin Lemoine Institut d'Astrophysique de Paris CNRS, Université Pierre & Marie Curie

Particle acceleration at relativistic shock waves ... and gamma-ray bursts

Martin Lemoine Institut d'Astrophysique de Paris CNRS, Université Pierre & Marie Curie

Outline:

- 1. Particle acceleration and relativistic collisionless shocks
- 2. Microphysics of gamma-ray burst afterglows

Standard lore:

 \rightarrow Lorentz force: $\mathbf{F} = q\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right)$

ightarrow near infinite conductivity: $\mathbf{E}_{|\mathrm{p}} \simeq 0$ in plasma rest frame

 \rightarrow E field is 'motional', i.e. if plasma moves at velocity v_p : E $\simeq -\frac{v_p}{c} \times B$

 \rightarrow acceleration through interactions with moving magnetized centers

- \rightarrow need some force or scattering to push particles across B
- \rightarrow examples: turbulent Fermi acceleration
 - Fermi acceleration at shock waves
 - acceleration in sheared velocity fields
 - magnetized rotators

Beyond MHD:

 \rightarrow examples: - reconnection

- wakefield/ponderomotive acceleration

Acceleration to UHE in gamma-ray bursts fireballs

Acceleration to UHE in gamma-ray bursts fireballs

Relativistic Fermi acceleration - small scale turbulence

Test particle picture:

ightarrow particles gain energy by bouncing across the shock front, exploiting the convective electric fields : $\delta E = -rac{v}{c} imes \delta B$

 \rightarrow if $\gamma_{\rm sh}$ >> 1, advection beats acceleration unless particles

scatter in small-scale turbulence $\lambda \ll r_g$, $\delta B \gg B$ and $r_g \ll \lambda \, \delta B/B$

(r_g gyroradius of accelerated particles, λ length scale of δ B) (ML et al. 06, Niemiec et al. 06, Pelletier et al. 09)

Relativistic Fermi acceleration - small scale turbulence

Test particle picture:

ightarrow particles gain energy by bouncing across the shock front, exploiting the convective electric fields : $\delta E = -rac{v}{c} imes \delta B$

 \rightarrow if $\gamma_{\rm sh}$ >> 1, advection beats acceleration unless particles

scatter in small-scale turbulence $\lambda \ll r_g$, $\delta B \gg B$ and $r_g \ll \lambda \, \delta B/B$

(r_g gyroradius of accelerated particles, λ length scale of δ B) (ML et al. 06, Niemiec et al. 06, Pelletier et al. 09)

Relativistic Fermi acceleration - small scale turbulence

Test particle picture:

shock

Micro-instabilities at a relativistic shock front

 \rightarrow shock reflected and shock accelerated particles move in upstream background field with Lorentz factor γ_{sh}^2 , along shock normal, forming an unmagnetized beam of Lorentz factor γ_{sh}^2 and opening angle $1/\gamma_{sh}$

 \rightarrow leading instabilities at ultra-relativistic shocks:

Weibel/filamentation (e.g. Medvedev & Loeb 99): anisotropic instability at low magnetization, builds up δB starting from zero B

current-driven (ML et al. 14a, 14b): driven by the gyration current around B, works at moderate magnetization

ightarrow main limitation: very short precursor, length \sim r_{L,0}/ $\gamma_{
m sh}$ ³ \sim $\gamma_{
m sh}$ ⁻¹ c/ $\omega_{
m ci}$

 \rightarrow many other potential instabilities at mildly relativistic shock waves (MHD regime)

Caveats and open questions

Most PIC simulations have not converged to a stationary state! (Keshet et al. 09)

 \rightarrow Keshet et al. 09: time = 10⁴ $\omega_p^{-1} \Leftrightarrow \sim 0.1\%$ of a dynamical timescale for a GRB!

 \rightarrow theoretical extrapolation is needed!

Main open questions:

- → phase space still largely unexplored... mildly relativistic shocks = terra incognita
- \rightarrow high energy particles stream further away and modify the precursor: how?
- \rightarrow other instabilities on larger (MHD?) scales?
- \rightarrow acceleration at magnetized shocks, e.g. PWNe up to $\gamma_e \sim 10^9?$

Relativistic Fermi acceleration - unmagnetized limit

PIC simulations:

(e.g. Spitkovsky 08, Nishikawa et al. 09, Martins et al. 09, Sironi & Spitkovsky 09, 11, 13, Haugbolle 11)

 \rightarrow supra-thermal particles stream ahead of the shock and excite plasma instabilities (Weibel/filamentation, two-stream, current-driven etc.), which build δB ...

 $\rightarrow \delta$ B builds a magnetic barrier (\sim 10% of equipartition) which mediates the shock transition...

 $\rightarrow \delta {\rm B}$ on c/ $\omega_{\rm p}$ scales provides the scattering required for acceleration...

 $\rightarrow \delta B$ provides the turbulence in which particles radiate (?) (Medvedev &Loeb 99)

Maximum energy

Maximum energy:

→ scattering in small scale turbulence $\lambda \ll r_g$ is not as efficient as Bohm... → max energy for electrons by comparing $t_{acc} \sim t_{scatt}$ to synchrotron loss, with $t_{scatt} \sim r_g^2/(\lambda c)$ and $\lambda \sim 10 c/\omega_p$, implies a maximum synchrotron photon energy: (e.g. Kirk & Reville 10, Plotnikov et al. 13, Wang et al. 13, Sironi et al. 13):

$$\epsilon_{\gamma,\max} \simeq 2 \operatorname{GeV} E_{54}^{1/4} \epsilon_{B,-2}^{1/2} \lambda_1^{2/3} n_0^{-1/12} t_{\mathrm{obs},2}^{-3/4}$$

→ long-lived GeV emission on 1000sec can result from synchrotron afterglow (Kumar & Barniol-Duran 09, 10, Ghisellini et al. 10)

... photons above 10GeV result from IC interactions... (Wang et al. 13)

in GRB130427A:

two spectral components with $\epsilon_{\rm max} \sim {\rm GeV}$ at 100-1000 sec for the synchrotron afterglow...

1

Theory vs observations/phenomenology:

 \rightarrow comparison between theory, PIC sims. and GRB phenomenology overall satisfactory: electrons are heated to $\gamma_{min} = \gamma_{sh} \ m_p/m_e \sim 10^5$, to near equipartition $\epsilon_e \sim 0.1$ -0.5 ... with a power-law tail of index s \sim -2.2 magnetized turbulence is excited up to $\epsilon_B \sim 0.01$ (canonical value !?)

1

Theory vs observations/phenomenology:

 \rightarrow comparison between theory, PIC sims. and GRB phenomenology overall satisfactory: electrons are heated to $\gamma_{min} = \gamma_{sh} \ m_p/m_e \sim 10^5$, to near equipartition $\epsilon_e \sim 0.1$ -0.5 ... with a power-law tail of index s \sim -2.2 magnetized turbulence is excited up to $\epsilon_B \sim 0.01$ (canonical value !?)

→ actually, a long-standing notorious problem for ε_{B} : turbulence lies on plasma scales c/ ω_{pi} , and should decay on 100's of c/ ω_{pi} , whereas observations probe the width of the blast, many orders of magnitude beyond... ⇒ origin of the magnetisation of GRB blast waves? (e.g. Gruzinov 99, Gruzinov & Waxman 99)

(ref. frame: shocked plasma) how does the turbulence evolve with distance to shock? damping or additional source of turbulence? e.g. Gruzinov & Waxman 99, Medvedev & Loeb 99, Chang et al. 08, Keshet et al. 09, ML 13

micro-instabilities associated with the shock structure: typically on plasma scales c/ω_{pi}

micro-instabilities associated with the shock structure: typically on plasma scales c/ω_{pi}

A solution from microphysics:

 \rightarrow particles radiate in a decaying turbulence with (ML 13, ML et al. 13):

$$\delta B^2(t) \sim \delta B^2(t=0) \left[t/(100c/\omega_{\rm pi}) \right]^{-0.8}$$

(t: comoving time since injection through the shock \sim distance to the shock)

 \rightarrow through Landau damping, $\delta {\rm B}$ is indeed expected to decay as power-law (Chang et al. 08, ML 14):

$$\frac{\mathrm{d}\langle \delta B^2 \rangle}{\mathrm{d}t} = -2 \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \gamma_k |\delta B_k|^2 \quad \text{with (linear) damping rate } \gamma_k \simeq \frac{4}{\pi} \frac{k^3 c^3}{\omega_p^2}$$
$$\Rightarrow \epsilon_B(t) \sim \epsilon_B(t=0) \left(\frac{k_{\max}(t)}{k_{\max}(0)}\right)^{n_B+3} \quad \text{with } k_{\max}(t)/k_{\max}(0) \propto t^{-1/3}$$

General picture

General picture

Synchrotron spectra in decaying microturbulence

1

 \rightarrow decaying turbulence leaves a strong signature in the spectral flux F_v(t_{obs}): **modifies slopes and characteristic frequencies...**

<u>General trend:</u> (for $-1 < \alpha_t < 0$)

 \rightarrow flux F_v at v comes from electrons with γ_e : $v_p(\gamma_e) = v...$

 $\rightarrow v_p \propto \gamma_e^2$ and $t_{synch} \propto \gamma_e^{-1}$ imply that low frequencies are produced in regions of low magnetic field, high frequencies are produced in regions of strong magnetic field...

1

... synchrotron emission of shock accelerated electrons in decaying micro-turbulence nicely reproduces the afterglows and >100MeV extended emissions of GRBs... (ML et al. 13)

... synchrotron emission of shock accelerated electrons in decaying micro-turbulence nicely reproduces the afterglows and >100MeV extended emissions of GRBs... (ML et al. 13)

Discussion

 \rightarrow a simple solution, which reconciles data and theory, for the problem of the origin of magnetization in GRB blast waves:

→ synchrotron radiation takes place in the partially decayed Weibel turbulence, which is self-generated at the (ultra-relativistic, unmagnetized) collisionless shock

 \rightarrow 4 GRBs seen in radio, optical, X-ray through >100MeV point to a consistent net decay power law of the magnetic field downstream of the shock:

-0.5 $\lesssim lpha_{
m t} \lesssim$ -0.4

 \rightarrow values for $\epsilon_{B_{-}}$ do not agree with other estimates by Cenko et al. for 090902B, 090323, 090328, or with Ackermann et al. (Fermi Coll.) for 110731A:

difference: these works do not account for >100MeV emission...

... so 3 constraints for 4 parameters...

degeneracy implies that $\varepsilon_{\rm B} \sim 0.01$ in these works is a choice rather than a result!

→ is this even more general? What about earlier determinations of $\varepsilon_{\rm B}$? Does the canonical value $\epsilon_{\rm B} \sim 0.01$ hold at all?

Particle acceleration at relativistic shock waves is intimately connected to the self-generation of turbulence...

 \rightarrow shock physics in mildly relativistic regime, high or low magnetization, less ideal conditions remain to be worked out...

 \rightarrow a clearer view in the past decade thanks to PIC simulations (+theory!), especially at low magnetization

A microphysical solution for the origin of magnetization in GRB blast waves:

→ synchrotron radiation takes place in the partially decayed Weibel turbulence, which is self-generated at the (ultra-relativistic, unmagnetized) collisionless shock

 \rightarrow a broad turbulence power spectrum at the shock leads to a power-law decay:

$$\delta B^2(t) \simeq \delta B^2(t=0) \left[t / \left(100 \omega_{\rm pi}^{-1} \right) \right]^{\alpha_t}$$

ightarrow 4 GRBs seen in radio, optical, X-ray through >100MeV point to a net decay power law of the magnetic field downstream of the shock: -0.5 $\lesssim \alpha_{
m t} \lesssim$ -0.4