Offline EM follow-up Search high-energy offline EM data about GW candidate events

LVC: Lindy Blackburn, Jordan Camp, <u>Nelson Christensen</u>, John Veitch GBM: Michael Briggs, Valerie Connaughton, Pete Jenke (UAH) ASM: Ron Remillard (MIT)

SGRB emission

SGRB emission

EM Followup with NASA missions

GW observation → EM search

Targeted search for EM counterparts to LIGO-Virgo GW events in NASA archival satellite data

EM detectors:

Mission	Instrument	Energy	FOV *	$\Delta \theta$	T transit
FERMI	GBM	20 keV-40 MeV	65%	>5°	3 hr
RXTE	ASM	1–10 keV	3%	<1°	1.5 hr

* FOV: fraction of sky observed, $\Delta \theta$: source localization resolution, T_{transit}: time required for full-sky coverage

Missions selected for excellent sky coverage and availability of offline data

- ► GBM gives 8-channel binned count data
- ►ASM has full coded mask data per 90s dwell

Need automated analysis for characterization of sensitivity and false-coincidence probability

Complements low-latency EM followup for xray and optical images, but done offline.

Example sources (y-ray)

unexplored territory of low-luminosity short GRBs possible high-energy precursors to NS/NS merger, with properties depending on EOS

Example sources (x-ray)

sGRB x-ray afterglow

proto-magnetar wind-driven afterglow [Gao et al 2013]

orphan x-ray afterglows to compact mergers

proto-magnetar wind-driven x-ray afterglows indicating post-merger remnant

Pipeline

ihope triggers from S6d

60d of S6D: 966383960-971614865 [Aug 20 2010 23:59:05 to Oct 20 2010 13:00:50]

- ▶ Begin with low-mass ihope production
- ▶100 time-shifts and non-spinning NS/NS injections used for testing method
- ► Probe tail of background distribution (~SNR 7.5)

LALInference and Bayes Factors

- For now just timeshift results
- Use timeshift triggers to develop and test the pipeline
- Calculate Bayes factors, physical parameter estimates
- Sky position estimates too
- Coherent Bayes Factor; coherent verses incoherent or noise
- Examining thousands of events with reasonable false alarm rates
- Testing on LIGO S6, Virgo VSR2,3

Example (time slide) event. Bayesian parameter estimation sky position. Relatively large Bayes factor too.

Parameter Estimation

CBC search trigger defines a time.

Run Bayesian parameter estimation code on all data for that time. For low mass CBC, 9 physical parameters.

Example above of posterior probability for two masses.

How Much Does A Trigger Look Like A Real Binary Inspiral Event?

Gravitational-Wave Galaxy Catalogue integration

Follow up most probable galaxy hosts consistent with PE posterior Galaxy catalog (~50k) up to 100 Mpc [D. White et al, 2011] ▶ position, type, shape, blue-light luminosity, ...

For each galaxy, we estimate density of posterior samples in distance and sky location

► distance posterior, width determined by sampling and reported galaxy distance error (10-20% depending on galaxy)

- Iocation posterior binned and smoothed to $\sim 3^\circ$
- Solution \bullet galaxies ranked by: mass \times f(d)/d² \times f(ϕ , θ)
- distance and sky-location calculated independently

- simulated HLV event from the Virgo cluster
- hosts from GWGC ranked by mass × overlap with LALInference posterior
- most probable galaxy is true host
- complications arise from: completeness, distance uncertainty (20%), blue-light luminosity prior

Coherent GBM statistic

semi-analytic marginalization over unknown source amplitude using power-law amplitude prior $P \sim s^{\beta}$

Increase in statistics

Multi-detector analysis provides increased SNR over single-detector

Additional channels allow smaller statistical errors for sky reconstruction for weak signals

Background of GBM analysis

 Background of analysis from a variety of sources..

un-triggered x-ray burst

triggered and un-triggered GRBs

mundane sources: solar activity, occultation steps, particle events, ...

Main cuts for GBM

Particle events strike and single detector, and are very soft.

Consistency with LALInference sky posterior: GBM likelihood ratio with vs without sky prior information

Other sources filtered automatically as needed. After cuts, coincidence background is low, easy to reach target 1000x coincidence rejection factor.

Software sensitivity to weak GRBs

Inject signal into GBM data using known response of instrument Inject at parameters (location, distance) of ihope injections

1 ph/cm²/s is a moderate flux for a short signal Need to do some stronger injections (standard candle at larger distance). 50-300 keV

X-ray flux measurements with ASM

- ASM is a coded-mask x-ray detector that operated 1995-2011
- Flux from a single location is reconstructed from the observed shadow pattern
- 90s observations with sensitivity ~20 mCrab every few hours
- Able to see typical on-axis x-ray afterglows at LIGO horizon for hoursdays

in collaboration with R. Remillard (MIT)

Levine et al, 1996

Levine et al, 1996

X-ray flux measurements with ASM

- Template search over possible afterglow light-curves in sparse, non-uniform data
- Parametrize light-curve as a double-broken power-law
- try to capture various scenarios: measurements during standard decay (III), early measurement (I), extended emission (II), delayed onset due to off-axis observation (negative index for first segment)
- decay indexes vary freely, breakpoint times on fixed grid (difficult to fit due to sparse data)

Sensitivity to simulated afterglow signals

 We sample a family of "typical" sGRB afterglow signals, as well as burstlike signals on varying timescales in order to test isolated extended emission models.

- There is a very large spread in observed signal-to-noise from ASM, due to the fact that the time-to-first-observation is highly variable and afterglows fade rapidly.
- As expected, longer signals are observed more consistently.

CBC Low Mass Background Sample (preliminary)

- The background is simply the GW background before and after EM coincidence.
- EM false-alarm rate is small enough to reject factor ~1000 of GW background.
- Small amount of x-ray coincident background. No GBM surviving coincident background after sky coincidence requirement.

Efficiency (preliminary)

- Efficiency of EM detection for sub-threshold GW event

- Standard x-ray afterglow, and weak GRB prompt coincidence (1 phot/s/cm^2 in 50-300 keV at 50 Mpc)

- Effects of duty-cycle, sky coverage, localization success, and signal strength

Toward Advanced LIGO-Virgo

► Advanced detectors should provide convincing GW candidates for follow-up

►EM coincidences through traditional channels expected to be rare

►GW-triggered targeted offline search can search for subthreshold or exotic emission scenarios

Survey data not limited by observation time -- can follow-up thousands of events and fully leverage GW-EM coincidence background rejection

► Automated analysis will characterize EM data, and can place EM upper limits about a known merger event

More information:

http://arxiv.org/abs/1303.2174

Follow-up on time-shift events

GW time-shift events (100x livetime) searched using additional GW-EM timeshifts (10x) Following plot represents about 1/3 of 60d S6D period, and about 2d of continuous GBM livetime

Only one event above thresholds in 1000x live-time. Efficiency loss due to observational constraints, localization, but mostly because our test signal was too weak.

Follow-up of time-shift events

• Follow-up 200 most promising galaxy hosts per event (computational constraint). This covers most of the probability for a well-localized event.

- No ASM outliers in the preliminary S6d epoch ($\sim 1/3$ of total time).
- 10x GW-EM timeshifts (in additional to 100 H1-L1 shifts) used.
- Small set of ASM cuts according to chi-sq against template, and a couple previously identified noisy locations (appear multiple times) vetoed.

Sensitivity to simulated afterglow signals

- ROC curve for a typical strong short-GRB afterglow.
- Since there are no coincidences in the preliminary background set, we take the ihope sensitivity at production thresholds.