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INTRODUCTION

leading model of short
gamma-ray bursts (SGRBs)

central engine is a black hole

surrounded by hot thick torus
—> end result of a binary
neutron star (BNS) merger

Paczynski 1986, Eichler et al. 1989
Narayan et al. 1992, ..

Rezzolla et al 201 |

BNSs are also among the most promising
sources of gravitational waves

likely of rate ~40/yr for Adv LIGO andVirgo
possibility of combined GW-EM detection !




X-RAY AFTERGLOWS OF SGRBs

® SWIFT revealed that many SGRBs are accompanied by

long-duration (10 — 10* s) and high-luminosity
(10° — 10°! erg/s) X-ray afterglows

® total energy can be higher than the SGRB itself

® hardly produced by BH-torus system - they suggest

ongoing energy injection from a long-lived NS

/

MAGNETAR MODEL Zhang & Meszaros 2001

X-ray emission —» spindown of a uniformly
rotating NS with a strong surface magnetic field
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X-RAY AFTERGLOWS OF SGRBs
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PRODUCT OF BNS MERGERS

SMNS / HMNS .. ..or STABLE NS

BNS

BH + TORUS

prompt
collapse

sim. & vis.:Wolfgang Kastaun (AEIl)

LONG-LIVED NS IS A LIKELY OUTCOME OF THE MERGER

) Demorest et al. 2010
® observation of ~ 2 Mg NSs  Antoniadis et al. 2013

® progenitor masses peak around 1.3 — 1.4 Mg = BMP mass likely < 2.5 Mg

Belczynski et al. 2010
e stable NS obtained in GR BNS merger simulations

Giacomazzo & Perna 2013



PRODUCT OF BNS MERGERS

SMNS / HMNS .. ..or STABLE NS
. \ BH + TORUS
\ BH + TORUS
prompt
collapse

sim. & vis.:Wolfgang Kastaun (AEIl)

LONG-LIVED NS IS A LIKELY OUTCOME OF THE MERGER

r p
newly-born NS is DIFFERENTIALLY ROTATING
- EARLY DYNAMICS DIFFERS FROM SIMPLE
DIPOLE SPINDOWN !




GRMHD EVOLUTION OF HMNSs

long-lived NS scenario: open issues

® early properties of merger product
e prompt SGRB emission
® early X-ray afterglows (‘extended emission’)

® mass ejection, effect on EM emission

we study the early evolution of a magnetized HMNS
via 3D MHD simulations in General Relativity

a powerful emission mechanism emerges, driven
by differential rotation..



HMNS EVOLUTION

60 ms evolution
e for 3 geometries
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BARYON-LOADED WIND

rand

® rest-mass density
of the wind

® ejection speed
® mass loss rate

® mostly isotropic!

p~ 108 g/cm3
v<S01c

M ~ 1072 Mg /s

rest-mass density evolution

dipole 60
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BARYON-LOADED WIND

® rest-mass density
of the wind p~ 108 g/cm®

® cejectionspeed v <0.lc

= [km|

® masslossrate M ~ 1072 Mg/s

® mostly isotropic!

rest-mass density evolution

dipole 60 dipole 6 rand




BARYON-LOADED WIND

rand

® rest-mass density
of the wind p~ 108 g/cm®

time = 45 r-ns

® cejectionspeed v <0.lc

® masslossrate M ~ 1072 Mg/s

® mostly isotropic!

rest-mass density evolution

dipole 60 dipole 6 rand
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results reproduced with By =2 x 10** G and y ~ 100 (dip-60)
or x ~ 1 (dip-6,rand)

GEOMETRY PLAYS A CRUCIAL ROLE!
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scale with initial magnetic energy
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where for the 3 geometries
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time [ms] E,, ~ (530, 1.5, 5.1) x 10** erg

* rescale energy in dip-60
to match dip-6 _ .
in terms of magnetic field

strength at stationary stage:
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. i i these relations are ‘universal’
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CONNECTION TO SGRB OBSERVATIONS

MH21A
"

vivey

10

i

1
!
!
1
1
1

Luminosty (110000 keV) (107 erg 5-)

10° 10* 107 007 01 1

o
|
|
|
|
|
|
|
|
|
|

-y

[
[
]
3
3
4
[

|

i

|

|

I

|

I

I

|

I

|

S -l ik
10 100 1000 10¢ 10

estram

. . - . 0.1 1
0 10 20 30 10 30 60 LI .

. A
time [ms|

efficiency n=L°>/L,, — n~0.01-0.1

EM

; ; obs 46 51 —1 :
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MF strengths of (B ~ 10** — 107 G]

can be produced from progenitor strengths < 102G via
DURING MERGER IN THE POST-MERGER

® compression of stellar cores  ® magnetic winding

® Kelvin-Helmholtz instability ® magneto-rotational instability
Zrake & MacFadyen 2013 Siegel, Ciolfi, Harte & Rezzolla 2013 (see poster)



CONNECTION TO SGRB OBSERVATIONS
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e GW PHASE : angular momentum removal by GWs
within < 1 s —> axisymmetry (if not, collapse to BH)

e DIFFERENTIAL ROTATION PHASE : lasts < 10 — 100 s
for longer afterglows |

| - HMNS migrates to SMNS through substantial mass ejection

2 - merger product is a SMNS — analogous evolution and
(or a stable NS) emission mechanism

e PULSAR PHASE : diff. rotation is damped —> transition to
dipole spindown ( t~2 decay observed in the longest X-ray
plateaus)



SUMMARY

long-lasting X-ray afterglows of SGRBs challenge the BH-torus leading scenario,
suggesting the formation of a long-lived NS as outcome of BNS mergers

magnetar model can explain the longer afterglows as dipole spindown, but not
the early emission (prompt SGBR and so-called ‘extended emission’)

we explore the early post-merger dynamics via 3D GRMHD simulations, starting
from HMNS initial models

robust feature of early evolution: baryon-loaded wind driven by diff. rotation

— mostly isotropic, impact of MF geometry
— substantial mass loss
— high luminosites, compatible with observed X-ray afterglows

— can explain long afterglows if combined with dipole spindown
at later times, not enough to explain prompt SGRB emission

FUTURE DIRECTIONS: | - full BNS merger simulations
2 - lightcurve and spectrum




BACKUP SLIDES



INITIAL DATA

.  HMNS MODEL M = 2.43 Mg

" ,‘
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MAGNETIC / FLUID PRESSURE RATIO

initial ratio Pp/pr K 10° initial magnetic field

represents a small

perturbation to the
stellar structure

at later times pp/pr < 1072 - 101

t =0 ms

dipole 60 dipole 6 rand

t = 60 ms




NUMERICAL SETUP

e D
® cartesian grid: 7 ref levels, up to | 180 km, with finest
resolution covering the star

® smallest grid spacing h ~ 140 m
® 7/2 symmetry and z-reflection symmetry

® |ow-density atmosphere pPatm =~ 6 X 10_9pc

evolution performed with the Cactus Computational
Toolkit and the WhiskyMHD code

Giacomazzo & Rezzolla 2007

ideal MHD, vector potential formulation, Lorentz gauge

(as in Giacomazzo & Perna 2013)
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EM LUMINOSITY - TESTS
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MHD EFFECTS: WINDING AND MRI

[here we focus on the HMNS evolution prior to its coIIapse]

two processes amplify the magnetic field and redistribute angular momentum:

- magnetic winding

poloidal magnetic field lines are wound up producing a toroidal component ;
in the linear regime toroidal fields are given by

Bior & (wBiaz-Q)t = Qywl

- magneto-rotational-instability (MRI)

~
local linear instability of magnetized differentially p— - C

rotating fluids ; ) 510
newtonian prediction for the fastest growing mode —

: , Hawley & Balbus 1991
gives ] -1 \ omei B,
MRI MRI 0O \/m
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HMNS EVOLUTION
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MAGNETIC FIELD AMPLIFICATION
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poloidal field is not amplified
during the evolution!

toroidal field is produced at first
by magnetic winding

Btor ~ awt



MAGNETIC FIELD AMPLIFICATION
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during the evolution!

toroidal field is produced at first
by magnetic winding

Btor ~ awt

then, MRI sets in!
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MRI vs RESOLUTION and MF STRENGTH
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MRI disappears by lowering B or the resolution,
while magnetic winding is always as predicted
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