

Magnetically driven winds from differentially rotating neutron stars and X-ray afterglows of SGRBs

RICCARDO CIOLFI

in collaboration with:

Daniel Siegel and Luciano Rezzolla

Siegel, Ciolfi and Rezzolla, ApJ 785, L6 2014 (arXiv:1401.4544)

Gamma-Ray Bursts in the Multi-messenger Era IPGP - Paris, June 19th 2014

INTRODUCTION

leading model of short gamma-ray bursts (SGRBs)

Paczynski 1986, Eichler et al. 1989 Narayan et al. 1992, ...

Rezzolla et al 2011

BNSs are also among the most promising sources of gravitational waves

likely of rate ~40/yr for Adv LIGO and Virgo possibility of combined GW-EM detection!

X-RAY AFTERGLOWS OF SGRBs

- SWIFT revealed that many SGRBs are accompanied by long-duration $(10-10^4~{\rm s})$ and high-luminosity $(10^{46}-10^{51}~{\rm erg/s})$ X-ray afterglows
- total energy can be higher than the SGRB itself
- hardly produced by BH-torus system they suggest ongoing energy injection from a long-lived NS

MAGNETAR MODEL Zhang & Meszaros 2001

X-ray emission \longrightarrow spindown of a uniformly rotating NS with a strong surface magnetic field

$$\gtrsim 10^{14} - 10^{15} \,\mathrm{G}$$

$$L_{
m sd}(t) \sim B^2 R^6 \Omega_0^4 igg(1 + rac{t}{t_{
m sd}}igg)^{-2}$$

Gompertz et al. 2013 Rowlinson et al. 2013

X-RAY AFTERGLOWS OF SGRBs

- SWIFT revealed that many SGRBs are accompanied by long-duration $(10-10^4~{\rm s})$ and high-luminosity $(10^{46}-10^{51}~{\rm erg/s})$ X-ray afterglows
- total energy can be higher than the SGRB itself
- hardly produced by BH-torus system they suggest ongoing energy injection from a long-lived NS

MAGNETAR MODEL Zhang & Meszaros 2001

X-ray emission \longrightarrow spindown of a uniformly rotating NS with a strong surface magnetic field

$$\gtrsim 10^{14} - 10^{15} \,\mathrm{G}$$

$$L_{
m sd}(t) \sim B^2 R^6 \Omega_0^4 igg(1 + rac{t}{t_{
m sd}}igg)^{-2}$$

Gompertz et al. 2013 Rowlinson et al. 2013

PRODUCT OF BNS MERGERS

LONG-LIVED NS IS A LIKELY OUTCOME OF THE MERGER

observation of $\sim 2~{\rm M}_{\odot}$ NSs Antoniadis et al. 2013

Demorest et al. 2010

Belczynski et al. 2010

- progenitor masses peak around $1.3-1.4~{
 m M}_{\odot}$ ightharpoonup BMP mass likely $< 2.5~{
 m M}_{\odot}$
- stable NS obtained in GR BNS merger simulations

Giacomazzo & Perna 2013

PRODUCT OF BNS MERGERS

LONG-LIVED NS IS A LIKELY OUTCOME OF THE MERGER

newly-born NS is DIFFERENTIALLY ROTATING

→ EARLY DYNAMICS DIFFERS FROM SIMPLE DIPOLE SPINDOWN!

GRMHD EVOLUTION OF HMNSs

long-lived NS scenario: open issues

- early properties of merger product
- prompt SGRB emission
- early X-ray afterglows ('extended emission')
- mass ejection, effect on EM emission

• ...

we study the early evolution of a magnetized HMNS via 3D MHD simulations in General Relativity

a powerful emission mechanism emerges, driven by differential rotation..

HMNS EVOLUTION

60 ms evolution for 3 geometries dipole 60 dipole 6 random

differential rotation powers baryon-loaded and magnetized outflow

for all MF geometries the outflow has an isotropic component

collimation depends strongly on MF geometry

BARYON-LOADED WIND

- ullet rest-mass density of the wind $ho \sim 10^8 {
 m g/cm}^3$
- ejection speed $v \lesssim 0.1 \text{ c}$
- mass loss rate $\dot{M} \sim 10^{-3} \ \mathrm{M_{\odot}/s}$
- mostly isotropic!

rest-mass density evolution ↓

BARYON-LOADED WIND

- ullet rest-mass density of the wind $ho \sim 10^8 {
 m \ g/cm}^3$
- ejection speed $v \lesssim 0.1 \text{ c}$
- ullet mass loss rate $\dot{M}\sim 10^{-3}~{
 m M}_{\odot}/{
 m s}$
- mostly isotropic!

rest-mass density evolution ↓

BARYON-LOADED WIND

- ullet rest-mass density of the wind $ho \sim 10^8 {
 m g/cm}^3$
- ejection speed $v \lesssim 0.1 \text{ c}$
- mass loss rate $\dot{M} \sim 10^{-3}~{
 m M}_{\odot}/{
 m s}$
- mostly isotropic!

rest-mass density evolution ↓

EM LUMINOSITY

scaling different from dipole spindown $L_{\rm sd} \propto B^2 R^6 \Omega^4$

results reproduced with $B_0 = 2 \times 10^{14} \; \mathrm{G}$ and $\chi \sim 100 \; (dip-60)$ or $\chi \sim 1 \; (dip-6, rand)$

GEOMETRY PLAYS A CRUCIAL ROLE!

EM LUMINOSITY

rescale energy in dip-60 to match dip-6

scale with initial magnetic energy

$$L_{\scriptscriptstyle {
m EM}}\!\simeq\!10^{48}\left(rac{E_{\scriptscriptstyle {
m M}}}{10^{44}\,{
m erg}}
ight)\!\!\left(rac{R_e}{10^6\,{
m cm}}
ight)^{\!3}\!\!\left(rac{P}{10^{-4}\,{
m s}}
ight)^{\!-1}\!\!{
m erg}\,{
m s}^{-1}$$

where for the 3 geometries

$$E_{\rm M} \simeq (530, 1.5, 5.1) \times 10^{44} \, {\rm erg}$$

in terms of magnetic field strength at stationary stage:

$$L_{\scriptscriptstyle \rm EM} \simeq 10^{48} \left(\frac{\bar{B}}{10^{15} \, {
m G}} \right)^{\!2} \! \left(\frac{R_e}{10^6 \, {
m cm}} \right)^{\!3} \! \left(\frac{P}{10^{-4} \, {
m s}} \right)^{\!-1} {
m erg \, s}^{-1}$$

these relations are 'universal' (hold for different geometries)

CONNECTION TO SGRB OBSERVATIONS

efficiency
$$\eta \equiv L_{\scriptscriptstyle \mathrm{EM}}^{\mathrm{obs}}/L_{\scriptscriptstyle \mathrm{EM}} \ \longrightarrow \ \eta \sim 0.01-0.1$$

observed luminosity range $L_{\rm EM}^{\rm obs} \sim 10^{46}-10^{51}\,{\rm erg\,s^{-1}}$ requires

MF strengths of $(\bar{B} \sim 10^{14} - 10^{17} \, \mathrm{G})$

can be produced from progenitor strengths $\leq 10^{12} \, \mathrm{G}$ via

DURING MERGER

- compression of stellar cores
- Kelvin-Helmholtz instability

magneto-rotational instability

IN THE POST-MERGER

magnetic winding

Zrake & MacFadyen 2013

Siegel, Ciolfi, Harte & Rezzolla 2013 (see poster)

CONNECTION TO SGRB OBSERVATIONS

- GW PHASE: angular momentum removal by GWs within $\lesssim 1 \text{ s} \longrightarrow \text{axisymmetry}$ (if not, collapse to BH)
- DIFFERENTIAL ROTATION PHASE : lasts $\lesssim 10-100~\mathrm{s}$ for longer afterglows \downarrow
 - I HMNS migrates to SMNS through substantial mass ejection
 - 2 merger product is a SMNS → analogous evolution and (or a stable NS) emission mechanism
- PULSAR PHASE: diff. rotation is damped \rightarrow transition to dipole spindown (t^{-2} decay observed in the longest X-ray plateaus)

SUMMARY

- long-lasting X-ray afterglows of SGRBs challenge the BH-torus leading scenario, suggesting the formation of a long-lived NS as outcome of BNS mergers
- magnetar model can explain the longer afterglows as dipole spindown, but not the early emission (prompt SGBR and so-called 'extended emission')
- we explore the early post-merger dynamics via 3D GRMHD simulations, starting from HMNS initial models
- robust feature of early evolution: baryon-loaded wind driven by diff. rotation
 - mostly isotropic, impact of MF geometry
 - substantial mass loss
 - high luminosites, compatible with observed X-ray afterglows
 - can explain long afterglows if combined with dipole spindown at later times, not enough to explain prompt SGRB emission

FUTURE DIRECTIONS: I - full BNS merger simulations

2 - lightcurve and spectrum

BACKUP SLIDES

INITIAL DATA

HMNS MODEL

$$M=2.43~{
m M}_{\odot}$$

 $R_e = 11.2 \text{ km}$

DIFFERENTIAL ROTATION

$$\leftarrow$$
 $P_c = 0.47 \text{ ms}$

j-constant law

$$A/R_e = 1.112$$

ideal fluid EOS

$$\Gamma = 2$$

3 magnetic field geometries:

Shibata et al. 2011 Kiuchi et al 2012

I - DIPOLE 60
$$\varpi_{0,d} = 60 \text{ km}, 6 \text{ km}$$

2 - DIPOLE 6
$$A_{\phi} = A_{0,d} \varpi^2/(r^2 + \varpi_{0,d}^2/2)^{3/2}$$

$$\textbf{3 - RANDOM} \qquad \boldsymbol{A}_{ijk} = \frac{A_{0,r}\sqrt{\gamma}}{(r^2 + \varpi_{0,r}^2)^{3/2}} \sum_{\ell mn=0}^{n_k} \!\! \boldsymbol{a}_{\ell mn} \! \cos \left(\boldsymbol{x}_{ijk} \!\cdot\! \boldsymbol{k}_{\ell mn} \! + \! 2\pi \boldsymbol{b}_{\ell mn}\right) \\ + \!\! \boldsymbol{c}_{\ell mn} \! \sin \left(\boldsymbol{x}_{ijk} \!\cdot\! \boldsymbol{k}_{\ell mn} \! + \! 2\pi \boldsymbol{d}_{\ell mn}\right)$$

superposition of $\sim 6 \times 10^4$ modes with random amplitudes

maximum field strength $~2\times10^{14}~{
m G}$ initial magnetic energy $~E_{_{
m M}}\simeq(530,~1.5,~5.1)\times10^{44}~{
m erg}$

MAGNETIC / FLUID PRESSURE RATIO

initial ratio $p_B/p_F \ll 10^{-5}$ at later times $p_B/p_F < 10^{-2} - 10^{-1}$

initial magnetic field represents a small perturbation to the stellar structure

NUMERICAL SETUP

- cartesian grid: 7 ref levels, up to 1180 km, with finest resolution covering the star
- smallest grid spacing $h \approx 140 \; \mathrm{m}$
- $\pi/2$ symmetry and z-reflection symmetry
- low-density atmosphere $ho_{
 m atm} \simeq 6 imes 10^{-9}
 ho_{
 m c}$

evolution performed with the Cactus Computational Toolkit and the WhiskyMHD code

Giacomazzo & Rezzolla 2007

ideal MHD, vector potential formulation, Lorentz gauge

(as in Giacomazzo & Perna 2013)

EM LUMINOSITY

$$egin{align} L_{_{
m EM}} &\equiv - \oint_{r=R_{
m d}} \!\!\! d\Omega \, \sqrt{-g} \, (T^{^{
m EM}})^r{}_t \ &\sim 10^{48} - 10^{50} \, {
m erg \, s}^{-1} \ \end{array}$$

EM LUMINOSITY - TESTS

MHD EFFECTS: WINDING AND MRI

here we focus on the HMNS evolution prior to its collapse

two processes amplify the magnetic field and redistribute angular momentum:

- magnetic winding

poloidal magnetic field lines are wound up producing a toroidal component; in the linear regime toroidal fields are given by

$$B_{\rm tor} \approx (\varpi B^i \partial_i \Omega) t = a_{\rm w} t$$

- magneto-rotational-instability (MRI)

local linear instability of magnetized differentially rotating fluids;

newtonian prediction for the fastest growing mode gives $(2\pi e^i) = P$

$$\tau_{\rm MRI} \sim \Omega^{-1} \qquad \lambda_{\rm MRI} \sim \left(\frac{2\pi e_k^i}{\Omega}\right) \left(\frac{B_i}{\sqrt{4\pi\rho}}\right)$$

Hawley & Balbus 1991

HMNS EVOLUTION

MAGNETIC FIELD AMPLIFICATION

- poloidal field is not amplified during the evolution!
- toroidal field is produced at first by magnetic winding

$$B_{\rm tor} \approx a_{\rm w} t$$

MAGNETIC FIELD AMPLIFICATION

 τ_{MRI} does not depend on magnetic field strength

- poloidal field is not amplified during the evolution!
- toroidal field is produced at first by magnetic winding

$$B_{\rm tor} \approx a_{\rm w} t$$

then, MRI sets in!

the growth time is:

measure

$$\tau_{\rm MRI, fit} = (8.2 \pm 0.3) \times 10^{-2} \,\rm ms$$

VS

order-of-mag. prediction

$$1/\Omega \approx (4-5) \times 10^{-2} \,\mathrm{ms}$$

MRI vs RESOLUTION and MF STRENGTH

$$\lambda_{MRI} \propto B$$

different resolutions at fixed magnetic field

$$B_c^{\rm in} = 5 \times 10^{17} \; {\rm G}$$

 different magnetic field strengths at fixed resolution (h)

$$B_c^{\rm in} = (1, 3, 4, 5) \times 10^{17} \text{ G}$$

MRI disappears by lowering B or the resolution, while magnetic winding is always as predicted

MRI WAVELENGTH

- ullet power spectrum reveals one single mode $k_{
 m MRI}$ (plus contributions from gradients over the selected region)
- ullet it corresponds to $\lambda_{
 m MRI} \, \sim 0.4 \;
 m km$

~0.4 km consistent with the strongest channel flows ripples are also tilted by $\theta_{kx} \approx 3^{\circ} - 7^{\circ}$

match with order-of-magnitude theoretical prediction

$$\lambda_{\mathrm{MRI,theo}} \approx (0.5 - 1.5) \mathrm{\ km}$$