

GAMMA RAY BURSTS AS SOURCES OF GRAVITATIONAL WAVES

STEPHEN FAIRHURST CARDIFF UNIVERSITY FOR THE LSC AND VIRGO COLLABORATION

twenty ten | 350 years of and beyond | excellence in science

Gamma Ray Bursts in the Multi-Messenger Era, Paris

OUTLINE

- LONG AND SHORT GRB PROGENITOR
 MODELS AND GW WAVEFORMS
- RESULTS FROM LIGO-VIRGO SEARCHES
- PROSPECTS FOR ADVANCED LIGO
 AND VIRGO
- PAYOFF FROM JOINT GW-GRB
 OBSERVATIONS

GRB CLASSIFICATION

Hjorth et al, Nature, 2005

LONG GRB PROGENITORS

Hjorth et al, Nature, 2005

LONG GRB WAVEFORMS

- Collapsar progenitor has uncertain GW emission.
 Models predict:
- from 10⁻² M_☉c²
 (Davies et al 2002, Piro and Pfahl 2007)
- To $10^{-8} M_{\odot}c^2$ (Ott 2009)

SHORT GRB PROGENITORS

Hjorth et al, Nature, 2005

SHORT GRB WAVEFORMS

Post-Newtonian Inspiral

Numerical Merger

TRIGGERED GRB SEARCH

GRB SEARCH

- For all GRBs, search from 600 seconds before to 60 seconds after burst
- Minimal assumptions about gravitational waveform other than known time and sky location
- About a factor of 2 improvement in sensitivity over all sky all time search

Sutton et al, NJP, 2010

SHORT GRB SEARCH

- Binary merger search look for characteristic signal from NS-NS or NS-NH merger
- Search 5 seconds before to 1 second after burst
- Coherently combine the data from different detectors making use of the known sky location
- About a 25% increase in sensitivity over all sky all time search

Babak et al, PRD, 2013 Harry and SF, PRD, 2011

COVERING SKY PATCHES

- Swift BAT bursts localized to a single point (from GW perspective)
- Fermi GBM and Interplanetary Network bursts not so well localised: tile the sky area

Aasi et al, 2014

INITIAL LIGO-VIRGO RESULTS

IIOJJIVIRGD

12

GRB 070201

- Localization overlaps M31 (at 770 kpc)
- No GW signal observed
- Exclude NS-NS and NS-BH merger in M31 with 99% confidence
- Indirect support for hypothesis of soft gamma repeater in M31

Abbott et al. ApJ 2008

(O)IVIRG

GRB 051103

- Localization overlaps M81 (at 3.6 Mpc)
- No GW signal observed
- Exclude binary merger progenitor as function of opening angle

1.0**Exclusion confidence** 67:59:59.8 **NS-NS 98%** 0.9NS-BH >99% 0.8 0.7BNS 0.6 **NSBH** 0.580 2040 5060 7090 1030 Jet semi-opening angle (deg)

SEARCH RESULTS: ALL GRB

- Search for gravitational wave signal from 508 GRBs observed between 2005 and 2010.
- No evidence of a signal for single event or population
- Place exclusion limits assuming a GW emission model
- Also see V.Predoi poster

Aasi et al, 2014

EXCLUSION DISTANCES: ALL GRB Assuming 10⁻² $M_{\odot}c^2$ in GW; emitted in small frequency band

Swift/Fermi Bursts

IPN Bursts

Aasi et al, 2014

16

Briggs et al, 2012

POPULATION EXCLUSION

Aasi et al, 2014

SEARCH RESULTS: SHORT GRB

- Search for gravitational wave signal from 69 short GRBs observed between 2005 and 2010.
- No evidence of a signal for single event or population
- Place exclusion limits assuming NS-NS and NS-BH progenitor model

EXCLUSION DISTANCES: SHORT GRB

Swift/Fermi Bursts

Briggs et al, 2012

Aasi et al, 2014

POPULATION EXCLUSION

ADVANCED DETECTOR PROSPECTS

(O)

Face on BNS at 80 Mpc

Face on BN₂₂ at 160 Mpc

Aasi et al, 2013

RATE EXPECTATIONS

	Estimated	$E_{\rm GW} =$	$10^{-2} M_{\odot} c^2$			Number	% BNS	Localized
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20{ m deg}^2$
2015	3 months	40 - 60	_	40 - 80	_	0.0004 - 3	_	—
2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017 - 18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 70	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022 + (India)	(per year)	105	80	200	130	0.4 - 400	17	48

Aasi et al, 2013

WHAT ABOUT GRBS?

- Hard to make a prediction for long bursts unknown gravitational wave emission
- Focus on short bursts, assuming NS-NS progenitor
 - Reasonable to assume binary is (close to) face on gives strongest gravitational wave signal
 - About a 25% increase in sensitivity over all sky all time search
 - Sky averaged sensitivity ~400 Mpc for network at design sensitivity

ANOTHER GRB080905A?

- Closest short GRB
 - z = 0.12
 - D~550 Mpc
- For advanced LIGO-Virgo network
 - NS-NS progenitor:
 - expected SNR~7.7
 - about a 1% false alarm probability
 - NS-BH progenitor:
 - strong signal
 - either detected or progenitor excluded

Rowlinson et al, MNRAS, 2010

GW-GRB PREDICTIONS

GRB rate of 8-30 per Gpc³ per year from Guetta and Piran, Astron.Astrophys, 2006 <u>NS-NS and NS-BH rates from Aasi et al, CQG</u>, 2010

GRB EXPECTATIONS

Epoch	Run Duration	ration BNS Range (Mpc)		Number of GW–GRB detections			
		LIGO	Virgo	All Sky	Fermi GBM	Swift BAT	
2015	3 months	40 - 80	_	0.0005 - 0.07	0.0003 - 0.05	0.0001 - 0.01	
2016 - 17	6 months	80 - 120	20 - 60	0.01 - 0.6	0.01 - 0.4	0.002 - 0.1	
2017-18	9 months	120-170	60 - 85	0.09 - 3	0.05 - 2	0.01 - 0.4	
2019 +	(per year)	200	65 - 130	0.5 - 6	0.3 - 4	0.07 - 1	
2022+	(per year)	200	130	0.9 - 10	0.6 - 6	0.1 - 2	

Clark et al, in prep.

Assume that:

- All short GRBs produced by BNS mergers and
- Detectors sensitive to all GRBs within LIGO/Virgo range Rate doubles if 20% of short GRBs have NSBH progenitor

RATES AT DESIGN SENSITIVITY

Clark et al, in prep.

PAYOFF FROM GW-GRB OBSERVATIONS

New insights into GRB progenitor
GW "standard sirens" as tools for cosmology
Constrain GRB beaming angles
Constrain NS equation of state
Measure "speed of gravity"

EXTRACTING THE WAVEFORM

- Un-modelled search can extract the gravitational waveform, even though it's buried in noise
- Distinguish between progenitor models

Toy example: provided by P. Sutton

NS-NS OR NS-BH?

From Hannam et al, ApJL, 2013

MEASURING THE DISTANCE

- Degeneracy between distance and binary inclination makes it hard to extract either with great accuracy
- Assuming small opening angle, likely to measure distance to ~10% accuracy
- With redshift measurements, start to probe cosmological models, Schutz, Nature, 1986

From Aasi et al, PRD, 2013

CONSTRAINING THE OPENING ANGLE

- Challenging from single GRB observations
- Measurement of NS-NS and GRB rates will allow us to constrain the opening angle

CONSTRAINING THE OPENING ANGLE

- Use all sky GW search to give lower limit on opening angle.
- Assume all NS-NS give sGRB
- In absence of GW a detection: lower limit on opening angle
- With GW detection, merger rate measured within a factor of a few: estimate of GRB opening angle

Expected NS-NS rate limits from observing runs

Clark et al, in prep.

SUMMARY

- Long and short GRBs are potentially strong gravitational wave sources.
- Restricting time and sky location of searches leads to increased GW search sensitivity.
- LIGO and Virgo have performed numerous GRB searches: no detection from single events (including 051103 and 070201) or population.
- Good prospect for joint GW-GRB observations in coming years.
- Gravitational wave signal will give unique insights into central engines.