HOW LONG DOES A BURST BURST?

BING ZHANG (UNLV) on behalf of BINBIN ZHANG (UAH)

Collaborators: Kohta Murase, Valerie Connaughton and Michael Briggs

HOW LONG DOES A BURST BURST?

• Q: Are you reinvent T₉₀?

T90

T_{90 :} is a good quantity to characterize GRBs, but may not reflect the true time scale of the GRB events.

Observationally, T₉₀ is energy dependent, instrument _____ dependent

Kouveliotou et al. 1993

T90

T_{90 :} is a good quantity to characterize GRBs, but may not reflect the true time scale of the GRB events.

Observationally, T₉₀ is energy dependent, instrument – dependent

90,E1-E2, mission

Qin et al 2013 see also Grupe et al. 2013 for updated Swift sample

Numbers of GRBs

T90

 T_{90} : is a good quantity to characterize GRBs, but may not reflect the true time scale of the GRB events

Theoretically, T₉₀ is most likely underestimated comparing to the true time scale of GRBs.

FIG. 8.— Examples of Joint BAT (connected lines) and XRT (crosses) lightcurves for GRBs with a long quiescence phase in the BAT band. The left and right vertical axes of each panel are for the count rate for the BAT data and XRT data, respectively.

Hu et al, 2014, ApJ in press, arxiv 1405.5949

FIG. 9.— Examples of X-ray lightcurves from the BAT trigger to late XRT observational epochs for the GRBs that have no significant flares after T_{90} , where the prompt X-rays (the connected dots) are derived by extrapolating the BAT data to the XRT band. The vertical lines mark the end time of T_{90} .

Hu et al, 2014, ApJ in press, arxiv 1405.5949

Some Extreme Cases (Ultra-Long GRBs)

GRB	t _{BAT}	t _{xrt}
130925A	~ 10 ⁴ s	1.2x10 ⁴ s [1]
111209A	~10 ⁴ s	5x 10 ⁴ s [1]
121027A	63 s	"6000 s" [2]
101225A	> 2000 s	"7000 s" [2]

www.

10¹ 10² 10³ 10⁴ 1 Time since GRB trigger (s)

Peng et al. 2013

E_p (keV)

▲ Γ ● Ε

1011

[1] this work

[2] Levan et al. 2013

- The GRB central engine continuously ejects energy, with a reducing power - E_p decreases with time (Lu et al. 2012)

- The GRB central engine continuously ejects energy, with a reducing power
- E_p decreases with time (Lu et al. 2012)
- At ~ T_{90} , the signal drops out from the γ -ray band, but it still continues in the X-ray. (a longer pre-drop time will lead a ultral-long GRB in γ -ray band, like 111209A, 130925A).

- The GRB central engine continuously ejects energy, with a reducing power
- E_p decreases with time (Lu et al. 2012)
- At ~ T_{90} , the signal drops out from the γ -ray band, but it still continues in the X-ray. (a longer pre-drop time will lead a ultral-long GRB in γ -ray band, like 111209A, 130925A).
- the afterglow sets in early on, peaking at $t_{ag,p}$ and decays with time.

It is initially over-shone by the internal-origin X-ray component, and eventually show up in terms steep-to-shallow transition , at tourst

- a theoretically motivated, observable quantity

- a theoretically motivated, observable quantity
- during t_{burst}, the observed emission is dominated by internal process (IS or mag. dissp.)

a theoretically motivated, observable quantity

- during t_{burst}, the observed emission is dominated by internal process (IS or mag. dissp.)

— during t_{burst} , the observed emission is **not** dominated by the afterglow emission from the external shock

- a theoretically motivated, observable quantity
- during t_{burst}, the observed emission is dominated by internal process (IS or mag. dissp.)
- during t_{burst} , the observed emission is not dominated by the afterglow emission from the external shock
- measured as by the **last** observed steep-to-shallow transition

t_{burst} - the measurement

1) Calculate T₉₀

2) Fit the Swift/XRT light curve as a multi-segment broken power-law

3) Identify the steep-to-shallow transitions, and record the decay slope before the transition;

4) Identify the **last** transition with pre-break slope steeper than -3, and record the transition time. The burst duration t_{burst} is measured as the maximum of this transition time and T_{90} of gamma-ray emission

T90 NOT EQ T_BURST

Bimodal? Probably not.

Uncertainties in the observational gaps

Figure 5. (a) The derived distribution of t_{burst} of the good sample (343 GRBs). The histogram bin sizes are optimized using Knuth's rule (Knuth 2000). The vertical axis "density" is defined as "count/bin size/total count". The derived t_{burst} are plotted as a black solid histogram. The distribution of the short GRBs (T₉₀ <2s) in the good sample is plotted as the blue solid histogram. The fit result by a two-component Gaussian distribution is plotted as a thick grey solid line and each component is plotted as red dashed lines. A typical value of $t_{gap,2} - t_{gap,1} = 3200$ s is plotted as a vertical green solid line. (b) Distribution of t_{burst} for the good sample (343 GRBs) and the uncertain sample (304 GRBs), with t_{burst} of the uncertain sample set to T_{90} . (c) Same as (b), but with t_{burst} in the uncertain sample set to a uniformly-distributed random value between T₉₀ and T_{X,0} in logarithmic scale.

t_{burst} - implications - a GRB bursts much (> 10 times) longer than T_{90} measurement; typical GRB central engines are active for quite a long time. - The ultra-long GRBs might be just tails of whole sample (see also Virgili et al. 2013). 1.0 0.8 Density 0.6

- a GRB bursts much (> 10 times) longer than T₉₀ measurement; typical GRB central engines are active for quite a long time.
- The ultra-long GRBs might be just tails of whole sample (see also Virgili et al. 2013).

- a large fraction of long GRBs are actually quite long, even though their T_{90} are not extremely long.

tburst - implications

- a GRB bursts much (> 10 times) longer than T₉₀ measurement;
 typical GRB central engines are active for quite a long time.
- The ultra-long GRBs might be just tails of whole sample (see also Virgili et al. 2013).
- a large fraction of long GRBs are actually quite long, even though their T_{90} are not extremely long.
- Direct Connection between T_{90} and the progenitor star ? Maybe not.

For example, LGRBs 030329 and 130427A's progenitors are believed to be Wolf-Rayet star, because they have associated Type Ic supernovae, not because of their duration.

sGRB 130603B is likely merger because it might be associated with a kilonova, not because of its short duration.

Similarly, one can not simply argue a burst may be from a blue supergaint just based on their 10⁴ s duration.

 a GRB bursts much (> 10 times) longer than T₉₀ measurement; typical GRB central engines are active for quite a long time.

- The ultra-long GRBs might be just tails of whole sample (see also Virgili et al. 2013).

– a large fraction of long GRBs are actually quite long, even though their T_{90} are not extremely long.

- Direct Connection between T_{90} and the progenitor star ? Maybe not.

For example, LGRBs 030329 and 130427A's progenitors are believed to be Wolf-Rayet star, because they have associated Type Ic supernovae, not because of their duration.

sGRB 130603B is likely merger because it might be associated with a kilonova, not because of its short duration (see Edo's talk).

Similarly, one can not simply argue a burst may be from a blue supergaint just based on their 10⁴ s duration.

- Why t_{burst} So long ? - still an open questions.

(e.g, fragmentation in the massive star envelope or the accretion disk, or formation of a magnetic barrier around the accretor)

— a GRB bursts much (> 10 times) longer than T_{90} measurement;

typical GRB central engines are active for quite a long time.

- The ultra-long GRBs might be just tails of whole sample (see also Virgili et al. 2013).

– a large fraction of long GRBs are actually quite long, even though their T_{90} are not extremely long.

Direct Connection between T₉₀ and the progenitor star ? Maybe not.
 For example, LGRBs 030329 and 130427A's progenitors are believed to be Wolf-Rayet star,

because they have associated Type Ic supernovae, not because of their duration.

sGRB 130603B is likely merger because it might be associated with a kilonova, not because of its short duration (see Edo's talk).

Similarly, one can not simply argue a burst may be from a blue supergaint just based on their 10⁴ s duration.

- Why t_{burst} So long ? - still an open questions.

(e.g, fragmentation in the massive star envelope or the accretion disk, or formation of a magnetic barrier around the accretor)

the single peak distribution of t_{burst}

 — long GRB progenitor stars may have a continuous distribution of mass and size, ranging from compact Wolf-Rayet stars to blue supergiants

a GRB bursts much (> 10 times) longer than T₉₀ measurement;

typical GRB central engines are active for quite a long time.

- The ultra-long GRBs might be just tails of whole sample (see also Virgili et al. 2013).

– a large fraction of long GRBs are actually quite long, even though their T_{90} are not extremely long.

Making a direct connection between T_{90} and the size of the progenitor star is premature.

For example, 030329 and 130427A's progenitors are believed to be Wolf-Rayet star, because they have associated Type Ic supernovae, not because of their duration.

Thus, one can not simply argue a burst may be from a blue supergaint just based on their 10⁴ s duration.

- How to prolong a GRB central engine duration with a compact progenitor star ?

(e.g, fragmentation in the massive star envelope or the accretion disk, or formation of a magnetic barrier around the accretor)

- the single peak distribution of t_{burst}

 long GRB progenitor stars may have a continuous distribution of mass and size, ranging from compact Wolf-Rayet stars to blue supergiants

- We didn't see Bromberg's plateau.

Summary Q: Are you reinvent T₉₀?

• A:

No. But our understanding of the duration of a "burst" has been advanced with new observations made by Swift.

t_{burst} might be more appropriate to describe the real duration of GRBs.
Future Swift observations will tell.

THANKS!

real-time tburst can be found at http://grbscience.com/tburst.html