

Fermi-LAT observations of GRB 130427A

Frédéric Piron

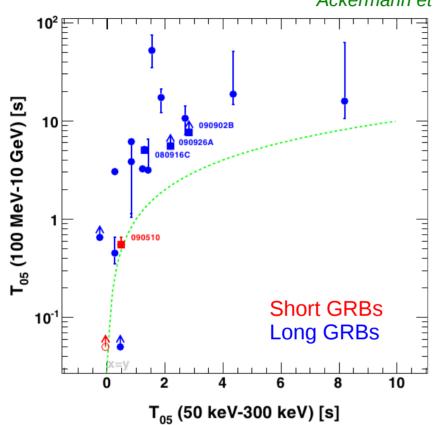
Laboratoire Univers et Particules de Montpellier (CNRS / IN2P3)

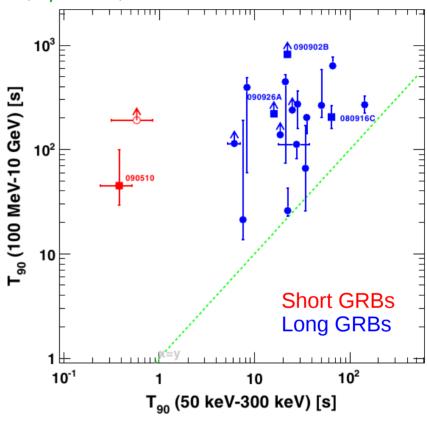
on behalf of the Fermi-LAT collaboration

Workshop on GRBs in the multi-messenger era (Paris, June 16, 2014)

Outline

- Reminder of GRB properties at GeV energies
- LAT observations of GRB 130427A
- GRB 130427A in the context of LAT-detected GRBs

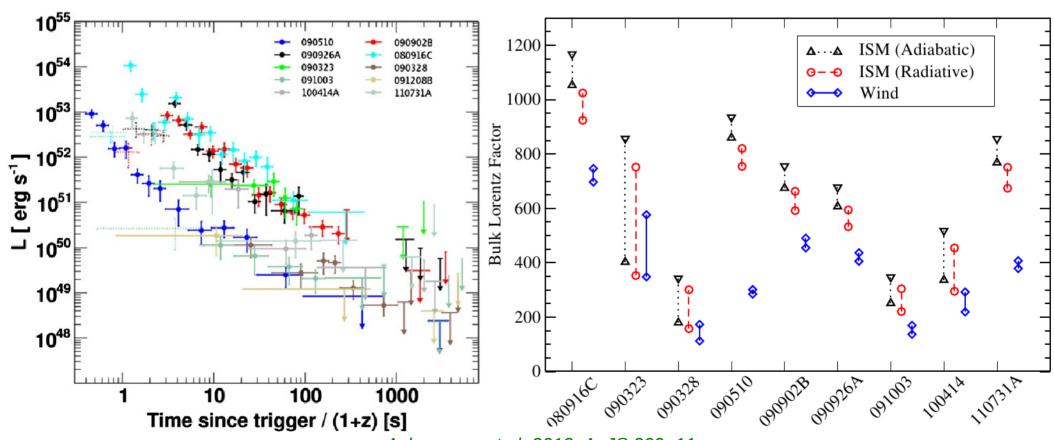




The first LAT GRB catalog (1/2)

GeV emission onset is delayed and temporally extended

- Most (but not all) of this emission likely comes from early afterglow: external shock → synchrotron emission from accelerated electrons
- Confirmed by individual broad-band (visible to GeV domains) analyses (GRBs 090510, 110731A)
- Late internal shocks (inverse Compton scattering) or hadronic emission (proton synchrotron and/or photopion-induced cascades) still possible



The first LAT GRB catalog (2/2)

- Long-lasting GeV emission consistent with the canonical afterglow model
 - No strong spectro-temporal variability
 - Emission decays as t⁻¹ (sometimes with a preceding steeper phase) with a photon spectral index of -2 at late times
- → blast wave in adiabatic expansion

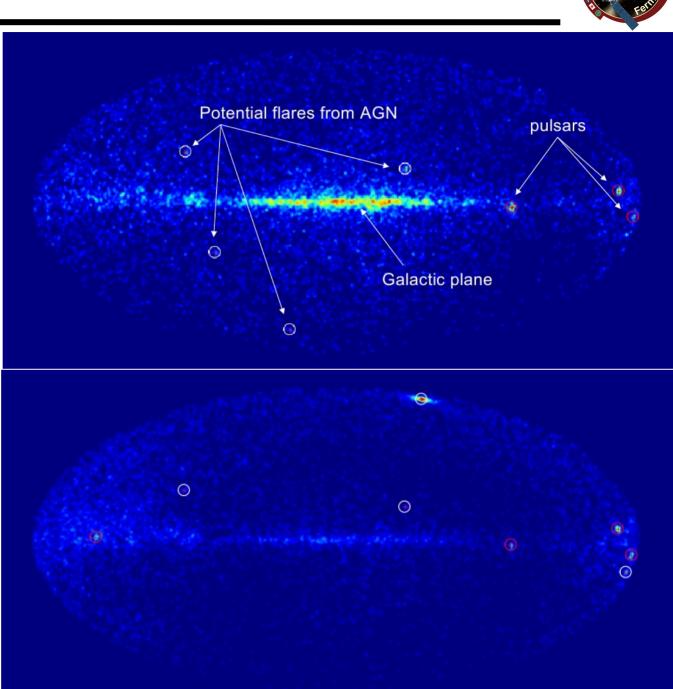
- Consequence: GRB jet Lorentz factors
 - Inferred from the fireball energetics and from the blast wave deceleration time (taken as the LAT peak-flux time)
 - For 9 GRBs with measured z
 - Γ between ~200 and ~1000
- → highly relativistic speeds

Observations of GRB 130427A (GCN circulars)

Gamma-ray
Space Telescope

- 14686 GRB 130427A / SN 2013cq: Hubble Space Telescope Observations
- 14673 VLT observations of GRB 130427A
- 14672 GRB 130427A: Konkoly optical observations
- 14669 GRB 130427A:: BTA spectroscopic observations on May 10/11.
- 14666 GRB 130427A: Continued RATIR Optical and NIR Observations Photometric Evidence for
- a New Component
- 14662 GRB 130427A: Skynet detections of a possible supernova
- 14646 GRB 130427A: Spectroscopic detection of the SN from the 10.4m GTC
- 14645 GRB 130427A: optical observations
- 14631 GRB 130427A: Tautenburg 2nd epoch: No break, no clear SN
- 14617 GRB 130427A: host galaxy observations
- 14615 GRB 130427A: Keck/LRIS Observations
- 14608 GRB 130427A: Ten nights of Skynet/PROMPT/GORT observations
- 14606 GRB 130427A: Continued RATIR Optical and NIR Observations
- 14605 GRB 130427A, LBT optical spectrum
- 14598 GRB 130427A, Watcher afterglow detection
- 14597 GRB 130427A: Excess optical emission consistent with an emerging supernova
- 14596 GRB 130427A: Amateur observations from Sweden
- 14592 GRB 130427A: Tautenburg afterglow observations
- 14590 GRB 130427A: RHESSI observations
- 14582 GRB 130427A: optical observations in CrAO
- 14579 GRB 130427A: correction to GCN 14487
- 14549 GRB 130427A: Non-observation of VHE emission with HAWC
- 14538 GRB 130427A: Pan-STARRS 1 optical observations
- 14534 GRB 130427A: MITSuME Ishiqakijima Optical Observation after 5 days
- 14526 GRB 130427A: Predictions about the occurrence of a supernova
- 14525 GRB 130427A: KAIT optical observations
- 14523 GRB 130427A: SARA-N optical observations
- 14522 GRB 130427A: VLA 20 GHz detection
- 14521 GRB 130427A: ABT optical observations
- 14520 GRB 130427A: High-energy neutrino search
- 14519 GRB 130427A: GMRT radio detection
- . 14518 GRB 130427A: Continued GMG optical observations
- 14517 GRB 130427A: Nishi-Harima Optical Spectroscopic Observations
- . 14516 GRB 130427A: photo-z of possible SDSS host galaxy
- . 14515 GRB 130427A: high energy gamma-ray detection by AGILE
- 14514 GRB 130427A: Continued RATIR Optical and NIR Observations
- 14513 GRB 130427A: MITSuME Ishigakijima Optical Observation after 2 days
- 14511 GRB 130427A: Challis Observatory optical observations
- 14510 GRB 130427A: Continued Skynet/PROMPT Observations
- 14509 GRB 130427A: further GMG observations
- 14508 GRB 130427A: Fermi-LAT refined analysis
- 14507 GRB 130427A: SARA-N detection
- 14506 GRB 130427A: Continued RATIR Optical and NIR Observations

- 14505 GRB 130427A: CrAO RT-22 36 GHz observation
- 14503 GRB 130427A in the Ep.i Eiso plane
- 14502 GRB 130427A: Improved Swift-XRT analysis
- 14498 GRB 130427A: MITSuME Okayama and Ishigakijima Optical Observation after 1 day
- 14497 GRB 130427A: Skynet/PROMPT Observations
- 14495 GRB 130427A: Nishi-Harima NIR Observations
- 14494 GRB 130427A: CARMA 3mm observations
- 14492 GRB 130427A: Xinglong TNT optical observation
- 14491 GRB 130427A: VLT/X-shooter redshift confirmation
- 14490 GRB 130427A optical time series
- 14489 GRB 130427A, Optical Observations
- . 14488 GRB 130427A: Continued iTelescope T21 optical observations
- 14487 Konus-Wind observation of GRB 130427A
- 14486 GRB 130427A: Kanata/HOWPol optical imaging polarimetry
- 14485 GRB 130427A: Swift-XRT refined Analysis
- 14484 GRB 130427A: SPI-ACS/INTEGRAL observations
- 14483 GRB 130427A: Continued RATIR Optical and NIR Observations
- 14482 GRB 130427A: CARMA 85 GHz detection
- 14481 GRB 130427A: SNUO/SOAO/BOAO Observation
- 14480 GRB 130427A: VLA 5 GHz detection
- 14478 GRB 130427A: NOT optical photometry and redshift
- 14476 GRB 130427A: RAPTOR Bright Counterpart Before Swift Trigger
- 14475 GRB 130427A: T100 observations
- 14474 GRB 130427A: optical observations in CrAO
- 14473 GRB 130427A: Fermi GBM observation
- 14472 GRB 130427A: Swift/UVOT followup observations of an Optical Afterglow
- 14471 GRB 130427A: Fermi-LAT detection of a burst
- 14470 GRB 130427A: Swift-BAT refined analysis
- 14468 GRB 130427A: Zadko observatory Gingin optical observations
- 14466 GRB 130427A: GMG optical observation
- 14465 GRB 130427A: MITSuME Okayama Optical Observation
- 14464 GRB 130427A: Optical Observations
- 14462 GRB 130427A: MAXI/GSC detection
- 14459 GRB 130427A: RATIR Optical and NIR Observations
- 14458 GRB 130427A: Weihai optical observations
- 14457 GRB 130427A: iTelescope T11 optical observations
- 14456 GRB 130427A: Continued P60 follow-up of an extremely bright optical afterglow
- 14455 GRB 130427A: Gemini-North redshift
- 14454 GRB 130427A: MITSuME Akeno Optical observation(T0+8000s~)
- 14453 GRB 130427A: PAIRITEL NIR Detections
- 14452 GRB 130427A: Faulkes Telescope North detection
- 14451 GRB 130427A: P60 early detection
- 14450 GRB 130427A: early optical observations
- 14449 GRB 130427A: P60 early nondetection
- 14448 GRB 130427A: Swift detection of a very bright burst with a likely bright optical counterpart


How bright was GRB 130427A in the LAT?

 Maps from automated software which searches for transient on 6-hour time scale, in galactic coordinates

 Map before GRB 130427A occurred

 Map which includes GRB 130427A

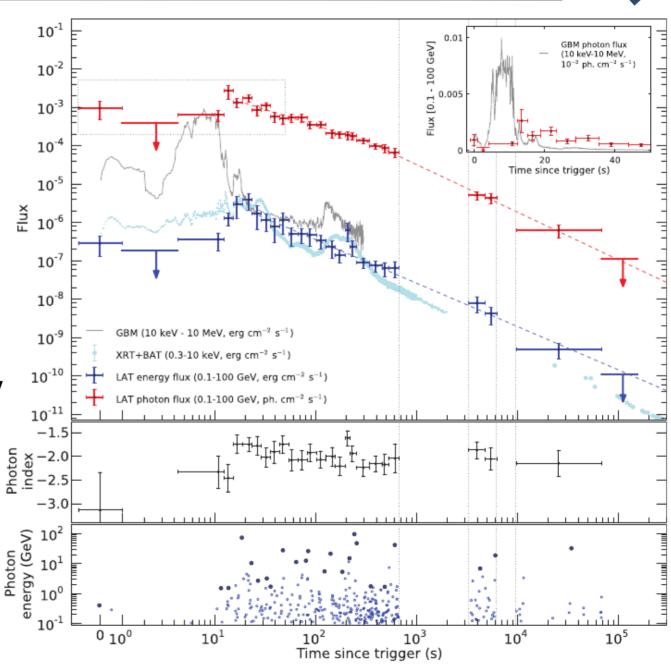
GRB 130427A composite light curve

- Redshift z=0.34
- Energy released in γ rays
 Eiso = 1.4 10⁵⁴ erg
- Brightest LAT GRB
 - >500 photons >100 MeV
 - 15 photons >10 GeV
- Unlike other bright LAT GRBs, the LAT >100 MeV emission is temporally distinct from the GBM emission
- LAT >100 MeV emission is delayed and temporally extended

F. Piron – Paris, 06/16/2014


- Delay ~10 s, continues well ₁₀³
 after the prompt phase
- 73 GeV photon detected at T₀+19 s

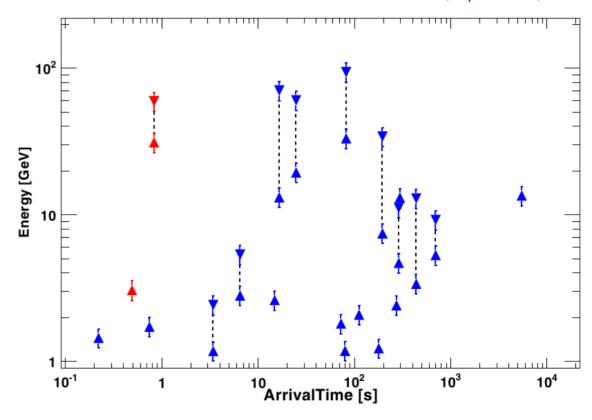
Spectral Energy Distributions


- Unlike other bright LAT-detected GRBs, the extral PL component becomes significant only after the GBM-detected emission has faded. This suggests that:
 - The GBM-detected emission is prompt emission (produced by internal shocks)
 - The LAT-detected emission is afterglow emission (produced by external shock)

GRB 130427A afterglow in X-rays and γ -rays

- Brightest X-ray afterglow ever detected
- Longest-lived gamma-ray emission: LAT emission detected for 19 hours
- LAT light curve is ~smooth
 - Photon flux: $t_{break} \sim 300s$
 - Energy flux temporal index:-1.17 +- 0.06
- LAT spectrum described by a power law at all times
 - Late spectral index ~ -2
- Some common features between LAT and lower energy light curves
- Record breaking 95 GeV photon at T₀+244 s

GRB 130427A highest-energy detected photons



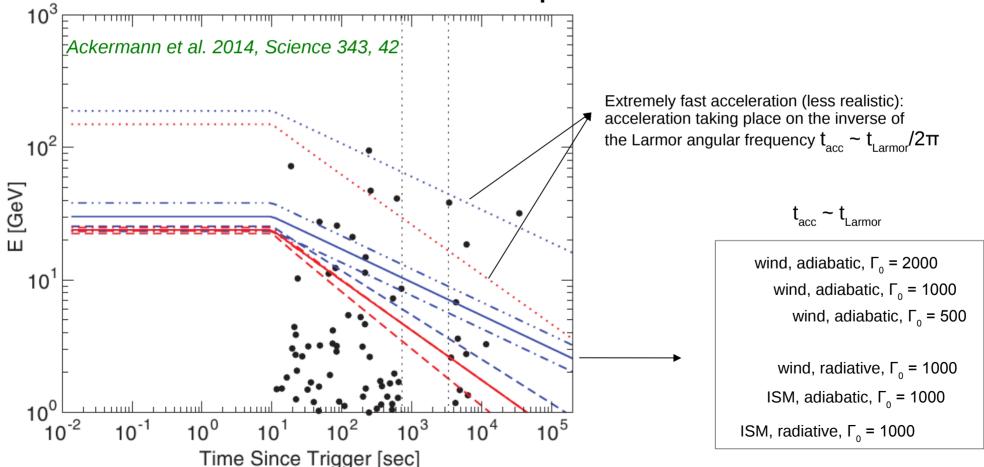
10 highest-energy LAT photons

\underline{E}	$E_{\rm rf}$	$T-T_0$
95	128	243.55
73	97	19.06
47	63	256.70
41	55	611.01
39	52	3410.26
32	43	34366.58
28	37	48.01
26	35	85.16
21	21	141.53
15	20	217.89

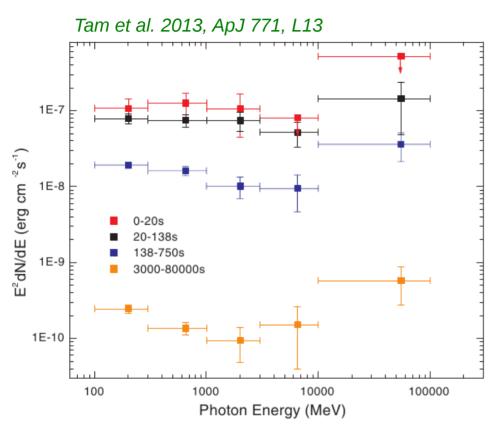
Ackermann et al. 2014, Science 343, 42

Ackermann et al. 2013, ApJS 209, 11

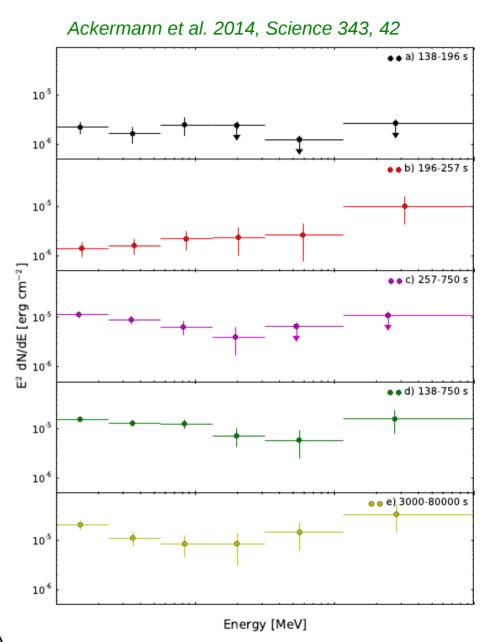
GRB 090902B: 33.4 GeV photon at T₀+81.8 s


GRB 080916C: 27.5 GeV photon at T₀+40.5 s
 (~150 GeV rest frame, z=4.35) in Pass 8 data

A challenge for synchrotron models

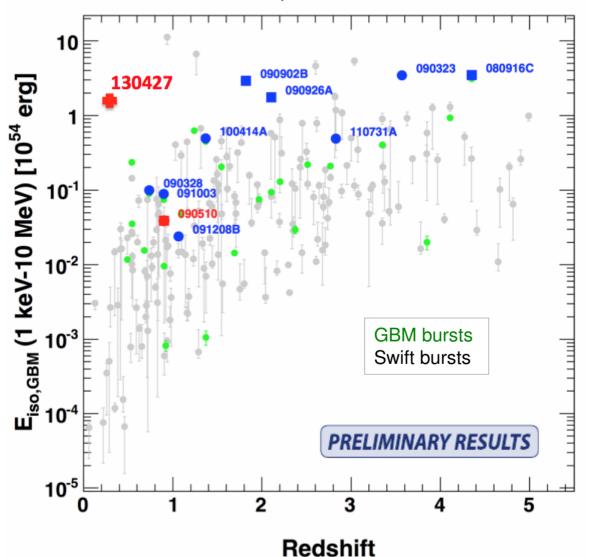

- Synchrotron radiation models predict a maximum synchrotron energy, derived by equating the electron acceleration and synchrotron radiative cooling timescales
 - Assuming a single acceleration and emission region
 - $E_{max} \sim 79\Gamma(t)$ MeV, with $\Gamma(t)$ given by Blandford & McKee (1976) in the adiabatic limit
- The LAT highest energy photons are incompatible with having a synchrotron origin
- Acceleration mechanism faster than the Fermi process?

No strong evidence for an SSC component



Likelihood analysis in various time bins

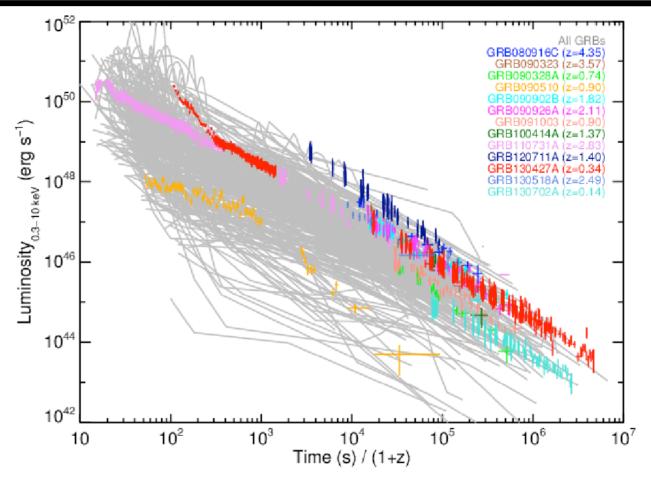
- Simple PL model better describes the data, BPL model is not required
- SED in d ~ sum of SEDs in a+c (soft) and b (hard)



Source frame energetics

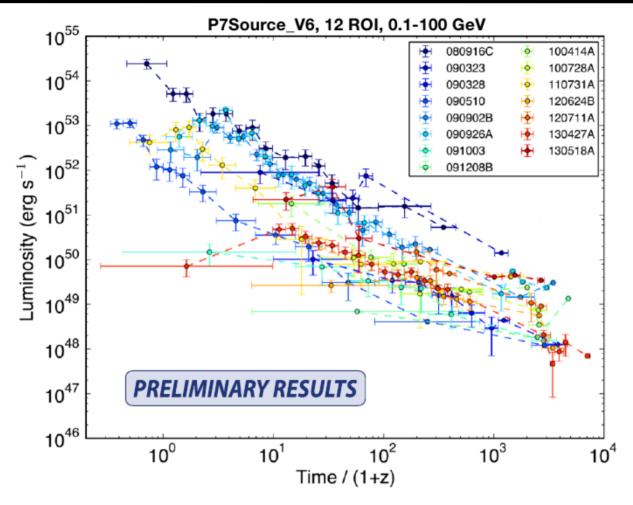
• Comparing Swift and Fermi GRB samples:

- Butler et al. 2007, ApJ 671, 656 (see also Sakamoto et al. 2011, ApJS 195, 2)
- Goldstein et al. 2012, ApJS 199, 19
- Ackermann et al. 2013, ApJS 209, 11


GRB 130427A is among the most energetic GRBs ever detected

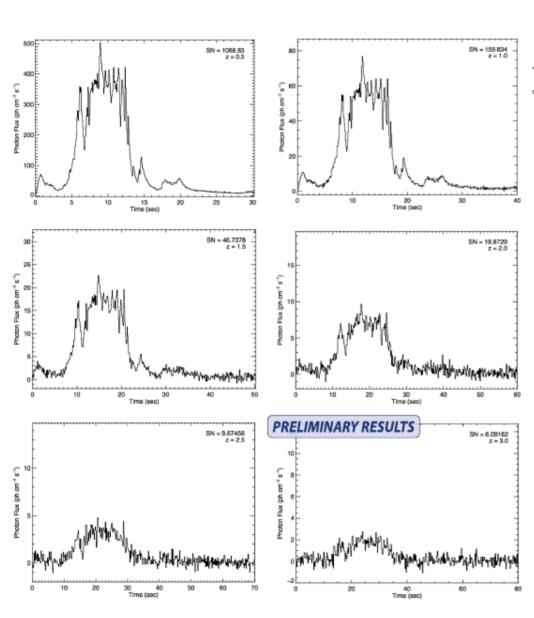
- Comparable to the 4 most energetic LAT detected bursts
- At first glance, GRB 130427A supports the idea that LAT bursts may represent a unique subpopulation of GRBs
 - Hyper-energetic GRBs?
 - High Lorentz factors?

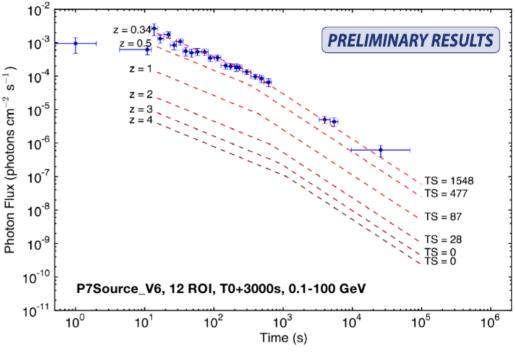
X-ray afterglow properties



- LAT-detected GRBs are on the high end of the XRT distribution
 - The spread in LAT afterglows light curves has begun to widen as the sample increases
- Source frame X-ray light curve for GRB 130427A is not extraordinary
 - GRB 130427A is similar to other LAT detected bursts
 - Consistent with being drawn from the general population

LAT source frame light curve

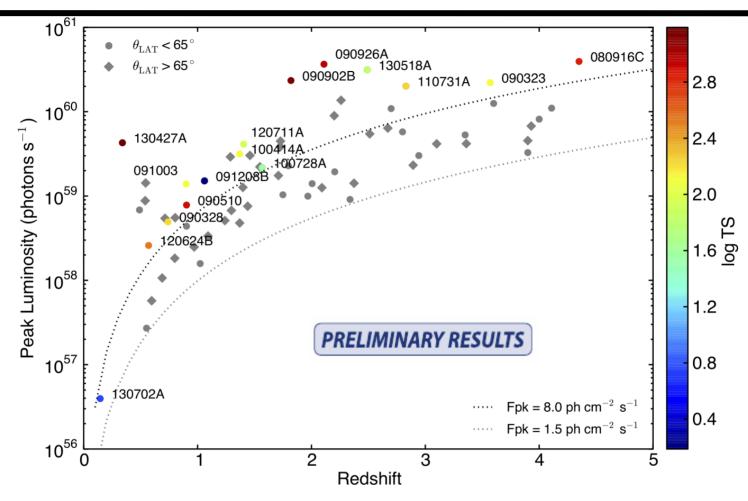



- Source frame GeV light curve for GRB 130427A is also not extraordinary
 - GRBs 080916C, 090902B, & 090926A are much brighter at early times
- How far would we have seen GRB 130427A?
 - What does this tell us about the nature of LAT non-detected GRBs?

Detectability (1/2)

Simulation of GBM detectability vs. redshift

 The burst would have been detected out to z ~ 4.5-5


Simulation of LAT detectability vs. redshift

TS drops quickly as a function of redshift,
 barely detectable at z = 2

Detectability (2/2)

- Large redshift range (2 < z < 5) where GRB 130427A would have been GeV quiet
 - LAT detectability closely traces the GBM peak flux threshold
- LAT-detected bursts not necessarily a unique population of GRBs
 - Appear instead to be a flux limited sub-sample of the normal GRB population

Summary and conclusions

GRB 130427A was exceptionally unique in the observer frame

- Rare event, considering the co-moving volume at $z \sim 0.34$ (within closest 5% of GRBs)
- The γ-ray records broken
 - Highest γ-ray fluence (>10⁻³ erg/cm²)
 - γ-ray photon w/ the highest observed energy (95 GeV)
 - Longest-lasting GeV emission (19 hours)
- One of the largest isotropic energy releases ever observed from a GRB
- GBM and LAT emissions arise from different emission mechanisms and/or regions
- LAT observations put severe constraints on the FS synchrotron model

GRB 130427A is characteristic of long GRBs at high redshifts

- High end of the GRB luminosity function observed at low z
- Would have appeared as a GeV quiet burst starting at a moderate z

Selection effects play an important role in our understanding of the ubiquity of GeV emission

- LAT bursts do not necessarily trace a unique hyper-energetic population of GRBs
- As we accumulate more LAT detections, we'll be able to perform more refined population demographics analysis