

MAX-PLANCK-INSTITUT FÜR EXTRATERRESTRISCHE PHYSIK

Synchrotron Cooling in the Hardest Gamma-Ray Bursts Observed by the *Fermi* Gamma-Ray Burst Monitor

Hoi-Fung Yu*^, Jochen Greiner*^, Hendrik van Eerten*,

et al. (in prep) *Max-Planck-Institut für extraterrestrische Physik, Germany ^ *Fermi* GBM Team

1

Hoi-Fung (David) Yu, MPE/GBM Team

Gamma-ray

Space Telescope

2

Hoi-Fung (David) Yu, MPE/GBM Team

Synchrotron radiation: $N(\gamma) \propto \gamma^{-p}$

Sample cutting criteria:

1) high fluence f(1-1000keV) > 1.0 × 10-4 erg cm-2 AND 2) BGO signal detected above 3 MeV

5

Hoi-Fung (David) Yu, MPE/GBM Team

Band function fitting results:

Slow-cooling toy model fitting results:

p values also suggest "slow, low" or "both"

Summary

- hard bursts suggest slow-cooling is consistent (Preece+02, Burgess+14)
- Band function may be fitting both the injection and cooling breaks > fast-cooling is not to be dismissed
- triple power-law suggests small break ratios
- when fitting a Band function, a Planck function is generally unnecessary (e.g. Burgess+14)
- when fitting a triple power-law, a Planck function is generally needed, with either kT ~ 10 keV or ~ 100 keV
- time-resolved spectral analysis may disentangle the thermal and non-thermal components in the prompt phase from the averaging effects in time-averaged spectra, which will be addressed in the *Fermi* GBM GRB Time-Resolved Spectral Catalog (Yu+ in prep.)

Backup slide

Band function:

Table 2. Electron distribution index *p* for different cases.

nd function: Electron distribution index <i>p</i> for different cases.								
Case ^a	α	$p = f(\Delta s)$	$f(1.2) - f(1.6)^b$	$f(1.0)^{c}$	$p = g(\beta)$	$g(-2.0) - g(-2.4)^{b}$	$g(-1.7)^{c}$	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	YA.
Fast, high	-3/2	$2\Delta s + 1$	3.4 - 4.2	3.0	$-2(\beta + 1)$	2.0 - 2.8	1.4	
Slow, low	-2/3	$2(\Delta s + 1/6)$	2.73 - 3.53	2.33	$-2\beta - 1$	3.0 - 3.8	2.4	
Both	-2/3	$2(\Delta s - 1/3)$	1.73 - 2.53	1.33	$-2(\beta + 1)$	2.0 - 2.8	1.4	

Notes. ^(a) Preece et al. (2002), Eqns. (9), (10), and (12). ^(b) Calculated from the ranges of peak and median values of Δs and β distributions for all eight bursts, given that $1.2 < \Delta s_{\text{peak}} < 1.4$, $1.4 < \Delta s_{\text{median}} < 1.6$, $-2.2 < \beta_{\text{peak}} < -2.0$, and $-2.4 < \beta_{\text{median}} < -2.2$. (c) Calculated from the median values of Δs and β distributions for GRB 100724B only.

Slow-cooling toy model:

According to the SYNC fitting results, there are two cases to consider: (1) the γ SYNC is actually the high-energy segment in the slow cooling scenario, i.e. vmin and vcool are the predicted break values; or (2) γ SYNC is indeed the middle-energy segment in the slow-cooling scenario, in this case the triple power-law is just mimicking the slowly varying BAND-like models. If (1) is true, then we can take the values of the γ SYNC peaks ~ -2.0 to -2.5, and we will have $p \sim 2 - 3$. Looking at Table 2, it can be seen that it matches nicely with the "both" case; if (2) is true, then instead comparing to γ SYNC, we should compare with β SYNC in Eqn. 8, and we will have $p \sim 3 - 4$, which matches nicely with the "slow, low" case.

