Monte Carlo Simulation for Thermal

Radiation from GRB Jet

v’ Sanshiro Shibata (Konan Univ.)

Collaborator: Nozomu Tominaga (Konan Univ., Kavli IPMU)

18 June 2014 Gamma-Ray Bursts in the Multi-messenger Era @ Paris 1



Outline

* Introduction

— Models for the prompt emission
 Method

— Hydrodynamical simulation
— Photon production sites
— Radiative transfer

e Results
* Summary

18 June 2014 Gamma-Ray Bursts in the Multi-messenger Era @ Paris



Introduction



Models for the prompt emission

* Internal shock model
— A standard scenario for a long time.
— Some problems (e.g., low energy spectral index)

* Photospheric (thermal emission) model
— Thermal emission from relativistic jets
— Some GRBs exhibit blackbody (elctial POro)

like feature (e.g., GRB090902B).
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Photospheric emission?

 The dominant opacity source in the jet is

electron scattering.
 The photosphere is a surface of t_._.=1.

* The actual position of the photon production
is much inner region. (e.g., Beloborodov 13)

—> Necessity of the radiative transfer

scat™
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Method
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Hydrodynamic simulation

v’ 2D relativistic hydrodynamics (tominaga 2009)

v’ Setup
— Progenitor: 15M_,. WR star (R
—y=5
— 0,,=10°

— Ly=5.3 X 10% erg st
—f,=0.9925 (ein/pc2=80)
— (log r, 8) = (600, 150) grids
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Hydrodynamic simulation

 We use a snapshot at 40s for the structures of
the jet and cocoon.
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The photon production site

* The effective optical depth T.
For static medium (Rybicki & Lightman 79)
TER ~ \/Ta_(’ra + 7g)
For relativistic flows (shibata et al. 2014)

FQ ‘ . —1/2 e i
[Tf{ = {‘—(-3’2 +3) + (rj)QT_} \/71 (Ta + 7s) J

3 Ta I'(1 — 3 cosby)

Ta=1(1 = fFcosby)a'L  7,=T(1 - Bcosb,)o’'L
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The photon production sites

e T. to aradius R.
o (T2 S L2
T, = /;% {3(\32 +3) + (F-.'})Qf} \/(1-“'({‘.1-:“' + o’ )dr

@]

e o0’ :electron scattering

* o’ includes
— Free-free absorption (e + p+y > e + p)
— Double Compton absorption (y+y+e - y+e)

[We find the R« which satisfiest: =1 J
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The photon production sites
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The photon production sites

3 S e sl Gl i 100
2 1
5 1 0.01
T 0OF 0.0001
o
>l 1e-06
2 1e-08
_3 L L N e 1e_10
8 10 12 14
o Plg/cm?]
1
0.01
0.0001
1e-06
1e-08
1e-10

0 0.05 0.1 0.15 0.2
/10" cm

18 June 2014 Gamma-Ray Bursts in the Multi-messenger Era @ Paris 12



Radiative transfer

observer

\/Numerical code progenitor
— Monte Carlo method |
— Calculate Compton scatterings et T.=1 -

.=
T.~1

— Photons are injected at t.=1

v'Photon injection
— Spatial distribution: n, ocT?
— Planck distribution W|th local plasma temperatures

— |sotropic in the comoving frame
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We use a snapshot at t=40s for
the jet and cocoon structure.

z/10"" cm

18 June 2014 Gamma-Ray Bursts in the Multi-messenger Era @ Paris 13



18 June 2014

Results

Gamma-Ray Bursts in the Multi-messenger Era @ Paris

14



Observed spectrum

= Epeak~300keV 106;—
* NOT a blackbody 1o |
— wider than B.B. |

* A bump like feature
at low energies
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Observed spectrum

107
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 NOT a blackbody 105 | Observed spectrum
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at low energies
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Origin of the bump?
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Origin of the bump?
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Origin of the bump?

7 . L 1 1 !
10 All —
Jet
10° £ Cocoon e ]
10% | —p Prompt phase

ants
L)

10° } >
— Afterglow phase :
) | (e.g., Pe’er et al. 06,
107 Suzuki & Shigeyama 13,
Nakauchi et al. 13)
10’ 1 .0 "|1' "|2' "|3' "|4
107 10 10 10 10 10

Photon energy [keV]

18 June 2014 Gamma-Ray Bursts in the Multi-messenger Era @ Paris 19



Comparison with the observations
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Comparison with the observations
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Comparison with the observations

Kaneko et al 2006
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Summary

v’ We calculate radiative transfer for the thermal radiation
from GRB jet.

v The spectrum consists of higher energy jet component
and lower energy cocoon component.

v’ The thermal radiation from GRB jet is NOT a blackbody
but may be Band-like spectrum.



