

TAToO

Follow-up of high energy neutrinos detected by the ANTARES telescope

Aurore MATHIEU (CPPM/LAM)

M. Ageron (CPPM), S. Basa (LAM), V. Bertin (CPPM), J. Brunner (CPPM), D. Dornic (CPPM), A. Klotz (IRAP), A. Le Van Suu (OHP), B. Vallage (IRFU), F. Schussler (IRFU)

Gamma-ray bursts in the multi-messenger era
Paris, 16-19 June 2014

Motivation

Cosmic neutrinos:

- → Neutrinos possibly produced in interactions of high energy nucleons with matter or radiation
- → If hadronic mechanisms:

```
High energy nucleons + hadrons → mesons + hadrons → neutrinos and photons
```

- → Simultaneous emitters of neutrinos and photons
- Detection from a cosmic source would be a direct evidence of hadronic scenario

<u>TAToO</u>

- → Multi-messenger approach: follow-up of neutrino alerts with optical/X-ray telescopes
- → Enhance the sensitivity to transient sources and the discovery potential
- → 1 neutrino could lead to a discovery

Example of sources

• High energy neutrinos from gamma-ray bursts and supernovae

GRB neutrinos:

relativistic jets (Fireball model)

10 TeV–10 PeV neutrino

Meszaros & Rees, Waxman

$$\begin{array}{l} p \, \gamma \, \rightarrow \, \Delta^{+} \rightarrow \, n \, \pi^{+} \\ p \, p \rightarrow \, \pi, K \\ \pi^{+} \rightarrow \, \nu_{\mu} \, \mu^{+} \rightarrow \, \nu_{\mu} \, \, \mathrm{e^{+}} \, \, \nu_{\mathrm{e}} \, \overline{\nu}_{\mu} \end{array}$$

SN neutrinos:

connection GRB-SN (chocked jet, midly relativistic) 100 GeV-10 TeV neutrino

Razzague & al., Ando & Beacom

TATOO

- Optical follow-up: search for an optical counterpart
- Transient sources: GRBs, SNe...

TATOO

- Optical follow-up: search for an optical counterpart
- Transient sources: GRBs, SNe...

Triggers

Directional:

1 neutrino in the direction (< 0.4°) of a local galaxy (< 20 Mpc) 12 per year

• High energy:

1 neutrino with E > 5-10 TeV 12 per year

Doublet:

Two neutrinos in a 3° angle and in a time window of 15 minutes 0.04 per year

TATOO

Online processing:

- Online reconstruction + trigger: ~ **3-5 s**
- Alert sending: ~ **1-10 s** depending on the telescope response
- Telescope slewing: ~ 1-5 s

Minimum delay between the neutrino and the first image: ~ 20 s

Angular performances:

Trigger	Angular resolution	Fraction events in fov	Mean energy
HE	0.25-0.3°	96% (GRB) 68% (SN)	~ 7 TeV
Directional	0.3-0.4°	90% (GRB) 50% (SN)	~ 1 TeV

Optical follow-up strategy

TATOO: status

Since 2009:

- **108** alerts sent:
 - **11** not followed (telescope maintenance, too close to the Sun...)
 - 97 followed by at least 1 telescope and at least 1 night
 - 90 followed by at least 1 telescope and at least 3 nights

Optical counterpart search

Analysis based on the image subtraction:

• Development of a new pipeline for image analysis

Prompt analysis: results

Hypothesis: neutrino emission simultaneously with photons

- → No transient optical counterpart associated with a neutrino detection
- → Upper limits on transient sources magnitude

Alert	Delay since trigger	U.L. Mag S/N=5
ANT100123A	15h 20m15s	12
ANT100302A	24h 20m8s	15.7
ANT100725A	0h 01m 15s	14.5
ANT100922A	1h 08m06s	14.0
ANT101211A	12h 03m30s	15.1
ANT110409A	0h 04m 17s	18.1
ANT110529A	0h 07m 33s	15.6
ANT110613A	0h 01m 08s	17.0
ANT120730A	0h00m 21s	17.6
ANT120907A	0h00m 25s	16.9
ANT121010A	0h00m 24s	18.6
ANT121206A	0h00m 27s	16.9

Based on only detected light curves [kann2010]

X-ray follow-up with SWIFT

Follow-up with SWIFT

X-ray follow-up: complementary informations to optical signals

- → The X-ray sky is rich in variable and transient sources
- → Fast response: increase sensitivity to fast transient sources (GRBs)

Strategy:

MoU 6 with alerts/yr

Only HE triggers with higher energy selection

2x2 tiles with 2ks exposure each

- ⇒ Sensitivity: 2.10⁻¹³ erg.cm⁻².s⁻¹
- ⇒ 4 tiles cover 48 arcmin fov

~60-70 % of the PSF

Observation strategy:

- 1) Automatic response to ToO (priority 1) → online analysis
- 2) Follow-up only if an interesting candidate is found (priority 2)

Image processing: Phil Evans (Leicester University)

Follow-up with SWIFT: results

⇒ 5 alerts sent to the XRT since June 2013

After a delay of: 23s / 25s / 18s / 18s / 24s

Processing after: 1h08 / 6h24 / 5h06 / 6h43 / 5h36

⇒ No X-ray counterpart associated to a neutrino detection

In case of GRB: compare with the afterglow lightcurves detected by Swift/XRT

Summary

TAToO works well since 2009
 More than 100 alerts sent

Optical follow-up:

Prompt analysis done: no counterpart associated to a neutrino detection

X-ray follow-up:

Operational since 2013

5 alerts sent to the XRT: no X-ray counterpart

Derive upper limits on transient sources magnitude

BACK UP

Image analysis

Image correction: Bias, dark subtraction Telescope site Flat-fielding Fringe correction Astrometry / photometry : SExtractor: catalogue of extracted sources **SCAMP**: astrometric calibration Le PHARE : photometric calibration Co-addition: SWarp: resampling and co-adding images **Subtraction:** Reference selection Pixel by pixel Residuals inspection: Visual scan Comparison with catalogues

Light curve scan

Telescopes response

Follow-up with SWIFT: example

Alert 2014/01/24:

J0700.2+0049: Swift observation summary

 Mission:
 ANTARES

 ANTARES RA:
 105.040°

 ANTARES Dec:
 +0.811°

 ANTARES Err:
 21.0 arcmin

 TO:
 2014-01-23 12:55:47 UT

Galactic: $213.20^{\circ} + 2.31^{\circ}$ Galactic N_H: 4.35×10^{21} cm⁻² Galactic E(B-V): NED unavailable Sun distance: 152.50°
Sun angle: 10.62 [hr](East of Sun)
Moon distance: 98.14°

Visibility of this field

 First slew:
 2014-01-23 16:36:42 UT

 First observation:
 2014-01-23 16:36:54 UT

 First analysis:
 2014-01-24 00:09:58 UT

#	RA (J2000)	Dec (J2000)	Err ₉₀ 1	Detection Flag ²	Dist from ANTARES pos	Exposure	Notes	Vizier
	07h 00m 20.41s	+00° 49′ 27.2″	5.6″	Good	2.8′	1.3 ks		
	Mean XRT ra	te: 9 (+3) ×10 ⁻³ ct s	₅ -1					

• Peak XRT rate: 9 (+3, +3) ×10⁻³ ct s⁻¹

Hide details

- RASS PSPC 3-σ upper limit: 0.03 ct s⁻¹ (PSPC count-rate)
- Mean XRT rate converted to PSPC: 9 (±3) ×10⁻³ ct s⁻¹
- Peak XRT rate converted to PSPC: $9 (+3, +3) \times 10^{-3}$ ct s⁻¹
- Mean XRT flux: 3.3 (± 1.1) $\times 10^{-13}$ erg cm⁻¹s⁻¹
- Peak XRT flux: 3.3 (+1.1, +1.1) ×10⁻¹³ erg cm⁻¹s⁻¹
- Products: Light curve | Spectrum |
- Expected serendipitous sources: ~0.5 [What is this?]

If an uncatalogued source is found, 2 questions are asked to identify the afterglow:

- 1) Is the source "bright"?
- 2) Is the source fading?

No counterpart