Developments of optical resonators and circulators for Compton X/γ ray machines Aurélien MARTENS (martens@lal.in2p3.fr) for MightyLaser, ThomX, ELI-NP-GS LAL, CELIA, KEK, LMA

MightyLaser

Outline

- Towards polarized positrons: Compton sources
- R&D program: Challenges, strategies, repercussions
- R&D cavity MightyLaser: setup, results, lessons
- ThomX project perspectives and applications
- ELI-NP-GBS perspectives and applications

Compton-based polarized positrons: motivation and challenges

The future of High Energy Physics?

Not discussed here:

- flavour facilities
- γ - γ collider
- etc.

Positron source: One of the R&D issues

Polarized positrons: physics case in short

V-A interactions \rightarrow polarisation specific processes

Electron polarisation \rightarrow determination of leptonic/fermionic asymmetries w/o angular analysis

Séminaire, LPC, Clermont, 21/02/2014

Aurélien MARTENS

Polarized positron sources (undulator)

Positrons historically produced by e- beam impinging on few X0 high Z target

- \rightarrow unpolarized
- \rightarrow 4x10¹⁰ @ 120Hz = 4.8x10¹² s⁻¹

Polarised positrons require circularly polarized photons on thin target

ILC design:

- \rightarrow at least 30% polarisation (60% better, upgrade option of the baseline)
- \rightarrow 2x10¹⁰/bunch w/ 1312 bunches @ 5Hz = 1.5x10¹⁴ s⁻¹

Polarized positron sources (Compton)

Polarized postitron source with the required flux and polarisation not (yet) demonstrated

Alternative to helical undulator based on Compton backscaterring

The Compton backscatering process

Spin-averaged behaviour governed by Klein-Nishina formula

The Compton backscatering process

Spin-averaged behaviour governed by Klein-Nishina formula

Mild energy dependence of the cross-section

$$\frac{s-m^2}{m^2} \simeq 4\gamma \frac{E_\lambda}{m}$$

$$\sigma \simeq \frac{8\pi\alpha^2}{3m^2} \left(1 - \frac{s - m^2}{m^2}\right) \simeq 0.66 \ barn$$

The cross-section is very small (sic)

Basic requirements for a high-brilliance source

Applications of Compton scattering: $e^{-} + hv \rightarrow e^{-} + X/\gamma$

<u>~10-1MeV</u> <u>Low energy applications</u> Radiography & Radiotherapy Museology <u>~1MeV-100MeV</u> <u>Nuclear fluorescence</u> Nuclear physics Nuclear survey Nuclear waste management >100MeV

High energy applications Compton polarimeter γγ collider Polarised positron source

...

...

R&D work at LAL: MightyLaser

R&D program on radiation sources at LAL

R&D program ongoing at LAL and KEK on enhancement cavities for positron sources

More general context: two paths investigated

High enhancement cavities

High laser power

High flux → High collision rate → electron ring

High beam quality
→ LINAC (emittance)
→ optical circulators

R&D with ThomX & MightyLaser

ELI-NP-GBS

Issues: oscillator phase noise, thermal effects, alignment, synchronisation, ...

Properties of passive mode locked lasers

T. Udem et al. Nature 416 (2002) 233

Phase noise of the laser must be low to lock to a high finesse cavity

Noise limits coupling

Séminaire, LPC, Clermont, 21/02/2014

Aurélien MARTENS

Laser choice: commercial products or not ?

Careful choice of the oscillator required, control of the phase noise introduced by amplification chain crucial

Séminaire, LPC, Clermont, 21/02/2014

Aurélien MARTENS

MightyLaser setup

R&D for polarized positron source for LC → circularly polarized laser → non planar geometry

Optical round-trip vs waist size → 4-mirror cavity 2 plane + 2 spherical mirrors → ellipticity

Yb 100fs MENLO Orange @ 178MHz, 20mW 3-stage amplifier → 50W Stretcher/Compressor (thermal issues in fibers) Sold fibers from Oscillator to output of amplifier

10MHz feedback required

Installation of the cavity

Séminaire, LPC, Clermont, 21/02/2014

MightyLaser preliminary results

Results obtained at the KEK ATF: collaboration with KEK colleagues 1.08MHz collision rate, ~1nC beam charge, 1.3GeV damping ring

march'11 results \rightarrow finesse 1000 π \rightarrow ~10W incident laser power \rightarrow 10⁶ γ /s @ ~25MeV \rightarrow 0.2 kW (continuous regime)

T. Akagi *et al* 2012 *JINST* **7** P01021 J. Bonis *et al* 2012 *JINST* **7** P01017

Evolution of the transverse size of the beam

MightyLaser preliminary results

Results obtained at the KEK ATF: collaboration with KEK colleagues 1.08MHz collision rate, ~1nC beam charge, 1.3GeV damping ring

December '13 results: \rightarrow finesse ~10000 π \rightarrow 50W incident laser power \rightarrow >100 γ /crossing @ ~25MeV \rightarrow >100kW (transient regime) \rightarrow 40kW (continuous regime)

 $\sim 10^8 \gamma$ /s roughly consistent with expectations

MightyLaser issues

Several bottlenecks identified:

Thermal effects in compressor (CVBG) Thermal effects in cavity Oscillator noise

Use low expansion substrate...

From H. Carstens et al., ASSL JTh5A (2013) 3

Séminaire, LPC, Clermont, 21/02/2014

Aurélien MARTENS

The ThomX project: Implement solutions to MightyLaser issues

ThomX

~50 MeV ring, 1nC → electron dynamics complex 17.8MHz collision rate (35.6MHz cavity) 300kW expected in cavity commissioning in 2016 Applications: medical and cultural heritage

10¹¹ - 10¹³ γ/s 1%-10% spectral bandwidth (w/ diaphragm) 10 mrad divergence w/o diaphragm

Pursue R&D of MightyLaser Try to improve stored power by a factor 10

Programme Investissements d'avenir de l'Etat ANR-10-EQPX-51. Financé également par la Région IIe-de-France. Program « Investing in the future » ANR-10-EQOX-51. Work also supported by grants from Région IIe-de-France.

FiledeFrance

ThomX applications

Transfer techniques developped at the ESRF (Grenoble) & SOLEIL (Saclay) → medical field: ESRF, INSERM (Grenoble)

→ Cultural heritage: formerly with C2RMF CNRS (Louvre) and now LAMS (Archeology)

Phase contrast

http://www.esrf.eu/news/general/amber/amber/

absorbtion-edge imaging on heavy elements (pigments)

J. Dik et al., Analytical Chemistry, 2008, 80, 6436

The ELI-NP-GBS project: A complementary strategy

ELI-NP-GS in a nutshell

ELI TDR in preparation

250pC hybrid S and C band technologies 32 trains separated by 15.6 ns 100Hz repetition rate

commissioning in 2016 and 2018

Séminaire, LPC, Clermont, 21/02/2014

ELI-NP-GS circulator

ELI-NP-GS naïve solution

ELI-NP-GS optical system

Tight constraints on photon beam: \rightarrow divergence <0.2mrad \rightarrow beam spot at 10m <1mm \rightarrow bandwidth (BW) <0.5% \rightarrow av. spectral density @20MeV: 8x10³ (s.eV)⁻¹ \rightarrow brilliance 1x10²² /(s.mm².mrad²0.1%BW) K. Dupraz et al, submitted to Phys. Rev. ST Accel. Beams

laser: >200mJ@100Hz, 515nm

ELI-NP-GS optimisation

Séminaire, LPC, Clermont, 21/02/2014

ELI-NP-GS alignement, synchronisation

Séminaire, LPC, Clermont, 21/02/2014

ELI-NP-GS status

Offer deposited to Romanian contractor on the 3rd of February...

while the construction of the building progresses well !

Séminaire, LPC, Clermont, 21/02/2014

ELI-NP-GS applications

Brand new gamma source with excellent spectral properties (100x state of the art) Wide range of applications will certainly additionnally show up

Nuclear Resonance Fluorescence depends upon the number of protons and the number of neutrons in the nucleus and is an isotope-specific material signature

NRF is the ID-card of nuclei \rightarrow nuclear waste package management, non proliferation, etc.

Conclusion

Ultimate goal reach few MW in cavities: required for positron sources at ILC

	ThomX	ELI-NP-GS
Flux	$10^{11} - 10^{13} \gamma/s$	10 ⁹ γ/s
Bandwidth	1% - 10%	0.5%
Divergence	<10 mrad	50 - 100 µrad

High enhancement cavities

MigtyLaser lessons: R&D required Thermal effects inside cavity Compressor heating Choice of oscillator

Expect several 100kW for ThomX

Still a lot of work ahead → Try to maximise the flux High laser power + circulator

Tight constraints on: Alignment Synchronisation Optics quality (large impinging energy)

ELI-NP-GS spectral density challenging

Exciting and hard times ahead: → commercial offer !!!