

Sébastien Clesse (Namur University, Belgium) based on

S.C., B. Garbrecht (TU-Munich), Y. Zhu (TU-Munich) arXiv:1402.2257

Testing Inflation and Curvaton scenarios with CMB distortions

CORE / PRISM workshop for a M4 ESA mission, February 10-11 2014, APC, Paris

* Silk damping: dissipation of acoustic waves into the monopole

- * Silk damping: dissipation of acoustic waves into the monopole
- * This results in spectral distortions of the CMB, of μ -type, y-type and intermediate i-type

- * Silk damping: dissipation of acoustic waves into the monopole
- * This results in spectral distortions of the CMB, of μ -type, y-type and intermediate i-type
- * Scales $8 \lesssim k \lesssim 10^4 {\rm Mpc}^{-1}$ can be probed (e.g. Chluba et al, 1202.0057) => extends by 10 e-folds the period of inflation accessible to observations

- * Silk damping: dissipation of acoustic waves into the monopole
- * This results in spectral distortions of the CMB, of μ -type, y-type and intermediate i-type
- * Scales $8 \lesssim k \lesssim 10^4 {\rm Mpc}^{-1}$ can be probed (e.g. Chluba et al, 1202.0057) => extends by 10 e-folds the period of inflation accessible to observations
- * Fisher Matrix analysis: scalar power spectrum (amplitude + spectral index + running) on pivot scale $k_{\rm p}=42{
 m Mpc}^{-1}$. For $1< n_{\rm s}\lesssim 1.2$, the 95% C.L. detection levels are

$$\mathcal{P}_{\zeta}(k_{\rm d}=42~{\rm Mpc}^{-1})\approx 7\times 10^{-9}~{\rm for~PIXIE}$$

$$\mathcal{P}_{\zeta}(k_{\rm d}=42~{\rm Mpc}^{-1})\approx 4\times 10^{-9}~{\rm for~PRISM}$$

Khatri, Sunyaev, 1303.7212

- * Silk damping: dissipation of acoustic waves into the monopole
- * This results in spectral distortions of the CMB, of μ -type, y-type and intermediate i-type
- * Scales $8 \lesssim k \lesssim 10^4 {\rm Mpc}^{-1}$ can be probed (e.g. Chluba et al, 1202.0057) => extends by 10 e-folds the period of inflation accessible to observations
- * Fisher Matrix analysis: scalar power spectrum (amplitude + spectral index + running) on pivot scale $k_{\rm p}=42{
 m Mpc}^{-1}$. For $1< n_{\rm s}\lesssim 1.2$, the 95% C.L. detection levels are

$$\mathcal{P}_{\zeta}(k_{\rm d}=42~{\rm Mpc}^{-1})\approx 7\times 10^{-9}~{\rm for~PIXIE}$$

$$\mathcal{P}_{\zeta}(k_{\rm d}=42~{\rm Mpc}^{-1})\approx 4\times 10^{-9}~{\rm for~PRISM}$$

Khatri, Sunyaev, 1303.7212

* What implications for inflation (and curvaton) scenarios? Need of a model oriented approach...

- * Silk damping: dissipation of acoustic waves into the monopole
- * This results in spectral distortions of the CMB, of μ -type, y-type and intermediate i-type
- * Scales $8 \lesssim k \lesssim 10^4 {\rm Mpc}^{-1}$ can be probed (e.g. Chluba et al, 1202.0057) => extends by 10 e-folds the period of inflation accessible to observations
- * Fisher Matrix analysis: scalar power spectrum (amplitude + spectral index + running) on pivot scale $k_{\rm p}=42{
 m Mpc}^{-1}$. For $1< n_{\rm s}\lesssim 1.2$, the 95% C.L. detection levels are

$$\mathcal{P}_{\zeta}(k_{\rm d}=42~{\rm Mpc}^{-1})\approx 7\times 10^{-9}~{\rm for~PIXIE}$$

$$\mathcal{P}_{\zeta}(k_{\rm d}=42~{\rm Mpc}^{-1})\approx 4\times 10^{-9}~{\rm for~PRISM}$$

Khatri, Sunyaev, 1303.7212

* What implications for inflation (and curvaton) scenarios? Need of a model oriented approach...

- ◆ 49 single-field models of the *Encyclopaedia Inflationaris* Martin et al, 1303.3787
- → 3 effective multi-field models softly turning trajectory Pi, Sasaki, 1205.0561
 - suddenly turning trajectory Noumi et al, 1307.7110
 - waterfall trajectory S.C., Garbrecht, Zhu, 1304.7042
- +1 simple curvaton model

* Single-field models: Methodology for model selection - 3 criteria

- * Single-field models: Methodology for model selection 3 criteria
 - 1. There must exist a phase during which $n_{\rm s}(k) = 1 2\epsilon_{1k} \epsilon_{2k} > 1$ where $\epsilon_1 = \frac{M_p^2}{2} \left(\frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2$ and $\epsilon_2 = 2M_p^2 \left[\left(\frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \frac{1}{V^2}\frac{\mathrm{d}^2V}{\mathrm{d}\phi^2}\right]$.
 - 2. A phase with $n_{\rm s} > 1$ must follow a phase with $n_{\rm s} < 1$ and $\epsilon_1 \neq 0$ between them

- * Single-field models: Methodology for model selection 3 criteria
 - 1. There must exist a phase during which $n_{\rm s}(k) = 1 2\epsilon_{1k} \epsilon_{2k} > 1$ where $\epsilon_1 = \frac{M_p^2}{2} \left(\frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2$ and $\epsilon_2 = 2M_p^2 \left[\left(\frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \frac{1}{V^2}\frac{\mathrm{d}^2V}{\mathrm{d}\phi^2}\right]$.
 - 2. A phase with $n_s > 1$ must follow a phase with $n_s < 1$ and $\epsilon_1 \neq 0$ between them

Exclusion of most models

Only Hybrid Inflation in the valley (HVI), Non canonical Kähler Inflation (NCKI) Generalized MSSM (GMSSM), Generalized Renormalisable Inflection Point (GRIP) and Running Mass Inflation (RMI) survive

- * Single-field models: Methodology for model selection 3 criteria
 - 1. There must exist a phase during which $n_{\rm s}(k) = 1 2\epsilon_{1k} \epsilon_{2k} > 1$ where $\epsilon_1 = \frac{M_p^2}{2} \left(\frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2$ and $\epsilon_2 = 2M_p^2 \left[\left(\frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \frac{1}{V^2}\frac{\mathrm{d}^2V}{\mathrm{d}\phi^2}\right]$.
 - 2. A phase with $n_s > 1$ must follow a phase with $n_s < 1$ and $\epsilon_1 \neq 0$ between them

Exclusion of most models

Only Hybrid Inflation in the valley (HVI), Non canonical Kähler Inflation (NCKI) Generalized MSSM (GMSSM), Generalized Renormalisable Inflection Point (GRIP) and Running Mass Inflation (RMI) survive

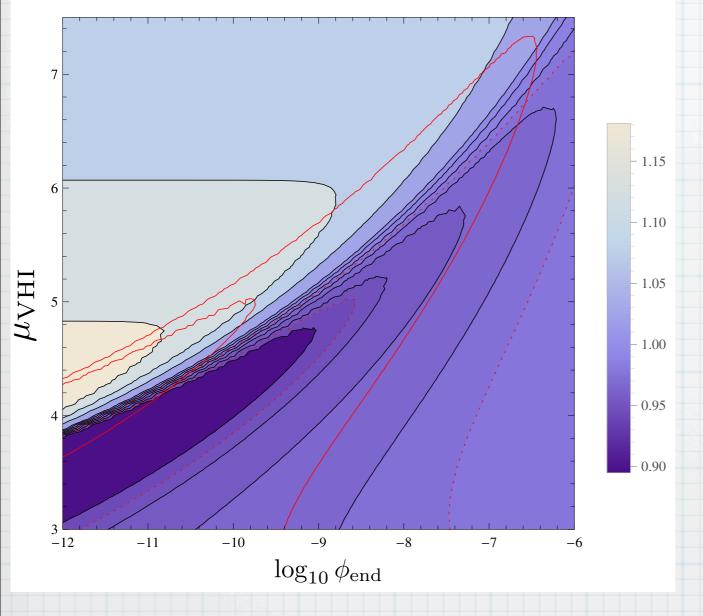
- 3. $n_{\rm s}=0.960\pm0.007$ on CMB angular scales AND $n_{\rm s}>1$ at $k_{\rm d}=42{\rm Mpc}^{-1}$
 - Slow-roll dynamics has been solved numerically
 - Modified version of idistort template (Khatri, Sunyaev, 1207.6654) for the calculation of distortions

- * Single-field models: Methodology for model selection 3 criteria
 - 1. There must exist a phase during which $n_{\rm s}(k) = 1 2\epsilon_{1k} \epsilon_{2k} > 1$ where $\epsilon_1 = \frac{M_p^2}{2} \left(\frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2$ and $\epsilon_2 = 2M_p^2 \left[\left(\frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \frac{1}{V^2}\frac{\mathrm{d}^2V}{\mathrm{d}\phi^2}\right]$.
 - 2. A phase with $n_s > 1$ must follow a phase with $n_s < 1$ and $\epsilon_1 \neq 0$ between them

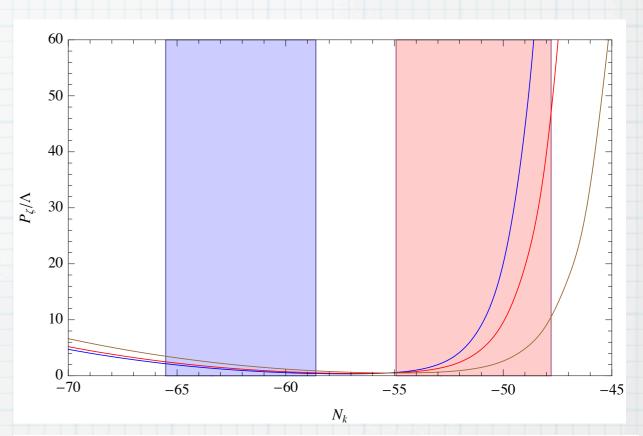
Exclusion of most models

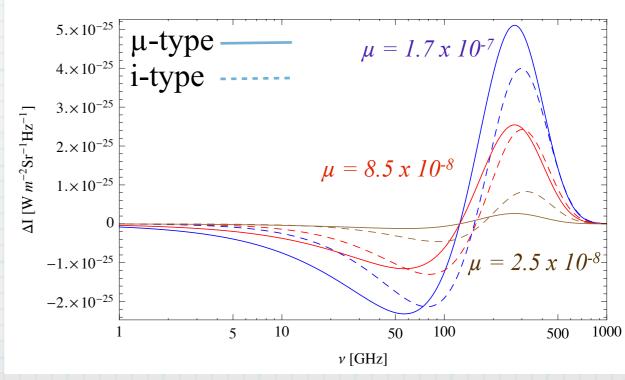
Only Hybrid Inflation in the valley (HVI), Non canonical Kähler Inflation (NCKI) Generalized MSSM (GMSSM), Generalized Renormalisable Inflection Point (GRIP) and Running Mass Inflation (RMI) survive

- 3. $n_{\rm s}=0.960\pm0.007$ on CMB angular scales AND $n_{\rm s}>1$ at $k_{\rm d}=42{\rm Mpc}^{-1}$
 - Slow-roll dynamics has been solved numerically
 - Modified version of idistort template (Khatri, Sunyaev, 1207.6654) for the calculation of distortions


Only HVI and RMI survive

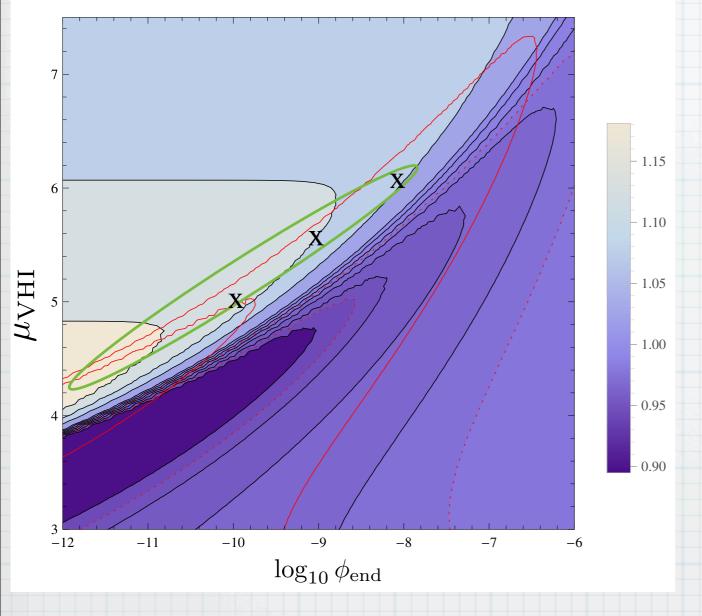
and only HVI leads to a sufficient enhancement of the scalar power spectrum for distortions to be detectable

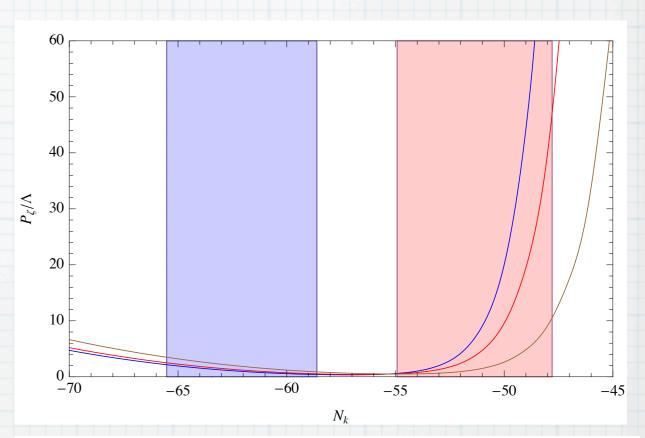

* Single-field models: Methodology for model selection - 3 criteria

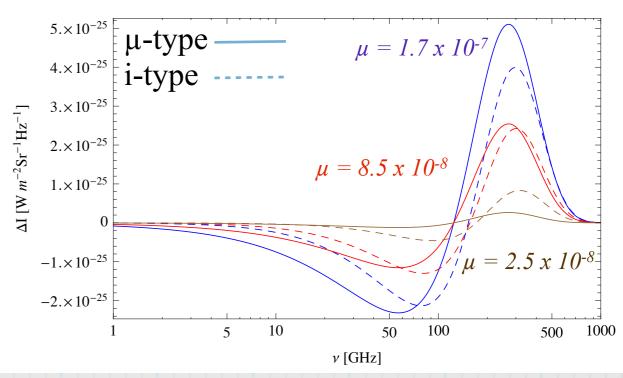

Hybrid potential : $V(\phi) = \Lambda \left(1 + \frac{\phi^2}{\mu_{\mathrm{VHI}}^2}\right)$

Spectral index contours at $k = 42 \, Mpc^{-1}$

NEED OF SUPER PLANCKIAN FIELD

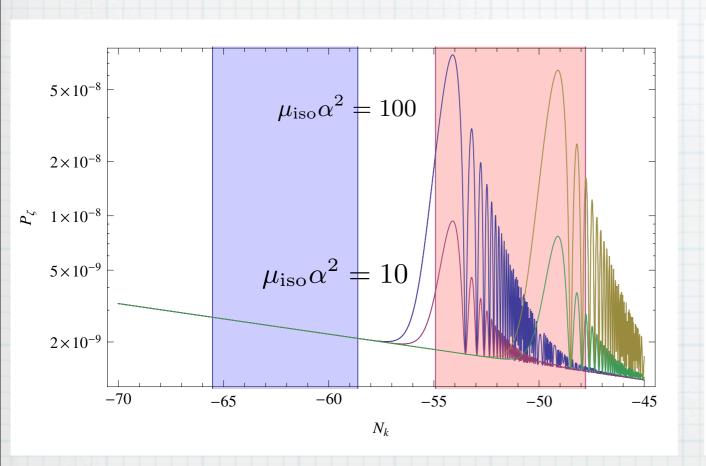


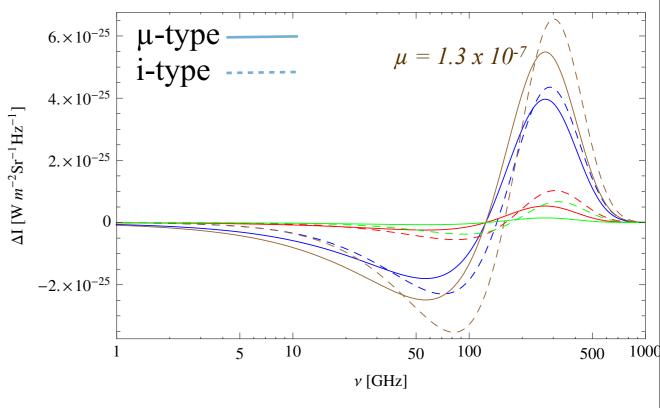

* Single-field models: Methodology for model selection - 3 criteria


Hybrid potential : $V(\phi) = \Lambda \left(1 + \frac{\phi^2}{\mu_{\text{VHI}}^2}\right)$

Spectral index contours at $k = 42 \, Mpc^{-1}$

NEED OF SUPER PLANCKIAN FIELD

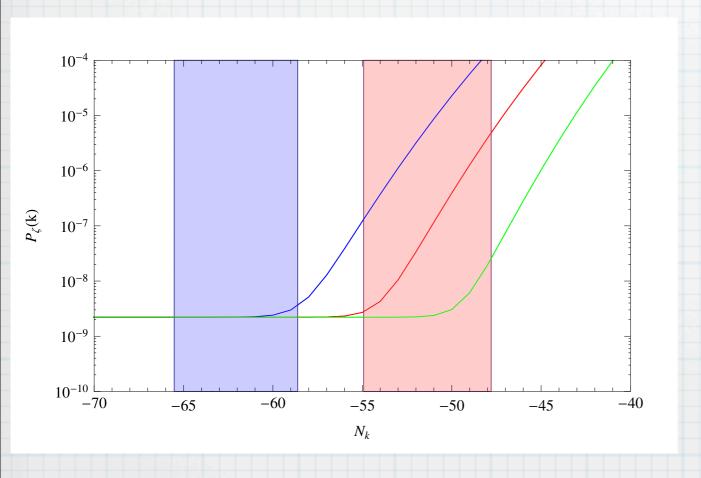

- * Single-field models: Methodology for model selection 3 criteria
- ***** 3 Effective models of multi-field inflation :
 - * Softly turning trajectory

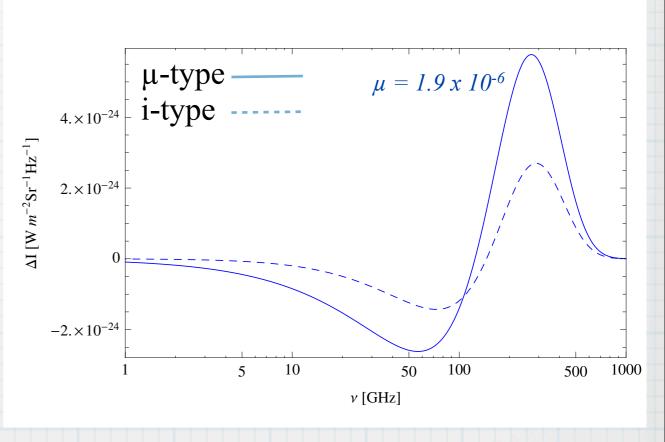

NOT DETECTABLE

- * Single-field models: Methodology for model selection 3 criteria
- * 3 Effective models of multi-field inflation:
 - * Softly turning trajectory
 - * Suddenly turning trajectory

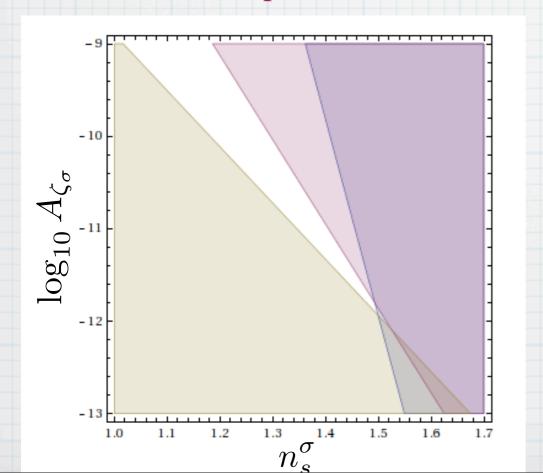
NOT DETECTABLE

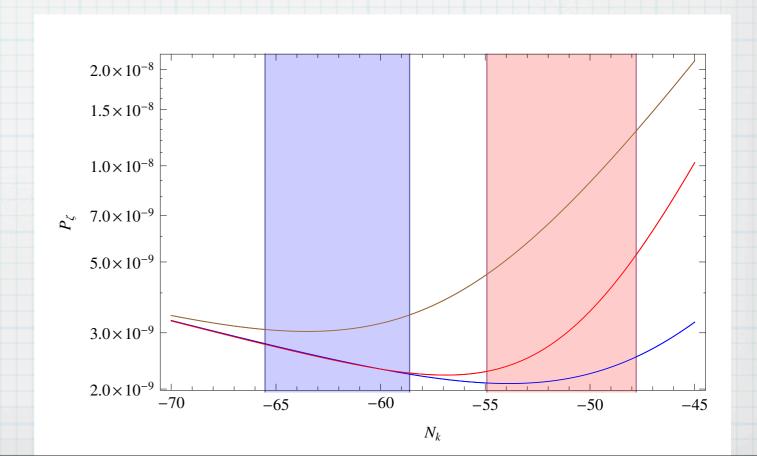
DETECTABLE

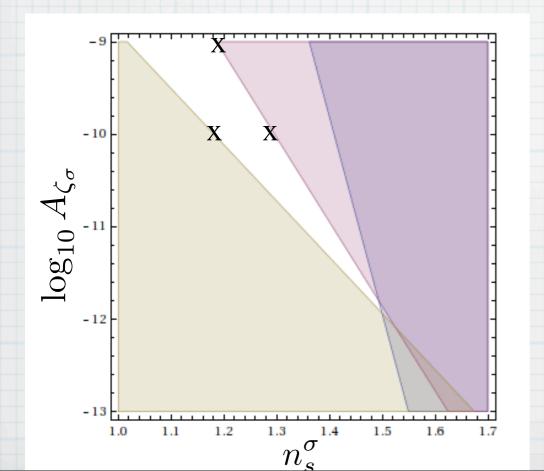

The peak increases $\sim \mu_{\rm iso} \alpha^2$ with $\mu_{\rm iso} \equiv \sqrt{m_{\rm iso}^2/H^2 - 9/4}$ i-type $> \mu$ -type

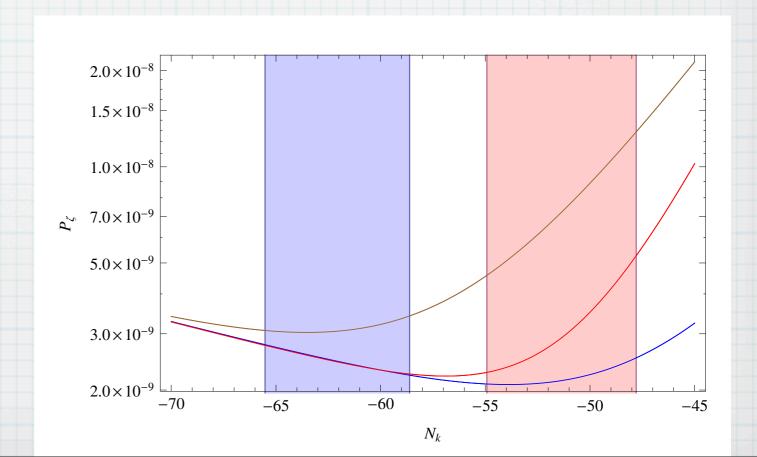

- * Single-field models: Methodology for model selection 3 criteria
- * 3 Effective models of multi-field inflation:
 - * Softly turning trajectory
 - * Suddenly turning trajectory
 - * Mild waterfall trajectory

NOT DETECTABLE


DETECTABLE


DETECTABLE




- * Single-field models: Methodology for model selection 3 criteria
- * 3 Effective models of multi-field inflation:
 - * Softly turning trajectory NOT DETECTABLE
 - * Suddenly turning trajectory DETECTABLE
 - Mild waterfall trajectory DETECTABLE
- * Simple curvaton model $\mathcal{P}_{\zeta}(\mathbf{k}) = \mathcal{P}_{\zeta \inf}(\mathbf{k}) + \mathcal{P}_{\zeta_{\sigma}}(\mathbf{k})$ NOT DETECTABLE if ultracompact mini-halos constraints are imposed Bringmann et al, 1110.2484

- * Single-field models: Methodology for model selection 3 criteria
- * 3 Effective models of multi-field inflation:
 - * Softly turning trajectory NOT DETECTABLE
 - * Suddenly turning trajectory DETECTABLE
 - * Mild waterfall trajectory DETECTABLE
- * Simple curvaton model $\mathcal{P}_{\zeta}(\mathbf{k}) = \mathcal{P}_{\zeta inf}(\mathbf{k}) + \mathcal{P}_{\zeta_{\sigma}}(\mathbf{k})$ NOT DETECTABLE if ultracompact mini-halos constraints are imposed Bringmann et al, 1110.2484

Conclusion

- * For single field inflation models, it seems rather fortuitous that detectable CMB distortions are produced.
- * Detectable distortions more likely produced by multi-field inflation e.g.: sudden turn, mild waterfall.

 This requires some tuning of the parameters.
- * Distortions from a simple curvaton model not detectable (due to constraints from ultracompact mini-halos)
- * μ-type and i-type distortions could help to distinguish models
- * Perspective: Fisher Matrix or MCMC analysis on specific models
- * A new window on the very early Universe is open...

Conclusion

- * For single field inflation models, it seems rather fortuitous that detectable CMB distortions are produced.
- * Detectable distortions more likely produced by multi-field inflation e.g.: sudden turn, mild waterfall.

 This requires some tuning of the parameters.
- * Distortions from a simple curvaton model not detectable (due to constraints from ultracompact mini-halos)
- * μ-type and i-type distortions could help to distinguish models
- * Perspective: Fisher Matrix or MCMC analysis on specific models
- * A new window on the very early Universe is open...

See arXiv:1402.2257 for more details

Conclusion

- * For single field inflation models, it seems rather fortuitous that detectable CMB distortions are produced.
- * Detectable distortions more likely produced by multi-field inflation e.g.: sudden turn, mild waterfall.

 This requires some tuning of the parameters.
- * Distortions from a simple curvaton model not detectable (due to constraints from ultracompact mini-halos)
- * μ-type and i-type distortions could help to distinguish models
- * Perspective: Fisher Matrix or MCMC analysis on specific models
- * A new window on the very early Universe is open...

See arXiv:1402.2257 for more details

Thank you for your attention....