Kinetic Inductance Detectors for space applications

Martino Calvo

Institut Néel, CNRS Grenoble

Outline

1 - Sensitivity

- Where we are now
- What are the needs for space-based applications
- Possible solutions

2 – The Cosmic Rays issue

- Effect on the detectors
- Latest measurements
- Possible solutions

3 – Bonus: cryogenics for space applications!

Kinetic Inductance Detectors

- Superconducting resonators with extremely high quality factors
- The resonant frequency shifts upon the absorption of radiation

• Intrinsically multiplexable in FD!

• High MUX factor → low thermal load, simple cold electronics, ...

Sensitivity

Ground based applications: ok!

- High background load
- Consequently, high photon noise level

NIKA pixels:
$$P_{opt} \sim 10pW \rightarrow NEP_{ph} \sim 5 \cdot 10^{-17}W/Hz^{0.5}$$

Low noise and at the same time a large dynamic range

Ideally:
$$Q_c \sim Q_i$$

NIKA:

Al pixels Strongly coupled to readout line

	150GHz	225GHz
# of det	132	224
NEP (@ 10Hz)	~ 8·10 ⁻¹⁷ W / Hz ^{0.5}	~ 2 · 10 ⁻¹⁶ W / Hz ^{0.5}
NEFD	15mJy•s¹/²/beam	30mJy∙s¹/²/beam

Sensitivity

Space based applications: to be demonstrated...

- Background is very low (black body @ 3K)
- $NEP_{ph} \sim 3 \cdot 10^{-18} W / Hz^{0.5}$
- A factor ~ 30 must be gained

The good news:

 The fundamental noise limit is given by the generation-recombination noise (in theory..)

$$NEP_{g-r} \propto n_{qp} \propto exp(-T)$$

Optimizing sensitivity: geometry

The responsivity of a KID is given by:

$$\frac{\delta \theta}{\delta n_{qp}} \propto \frac{\alpha Q}{V}$$

The geometry can be easily optimized for the expected signal!

For example, in the case of LEKIDs:

w – change the effective impedance Z_{eff} , the volume V of the absorber, $L_{k}(\rightarrow \alpha)$

 $S = \text{change } Z_{eff}$, the length of the line I, the surface filling factor

d – change the coupling $\rightarrow Q_c \rightarrow$ the power handling

t - change $L_k(\rightarrow \alpha)$, Z_{eff} , V

Optimizing sensitivity: materials

The responsivity of a KID is given by:

$$\frac{\delta \theta}{\delta n_{qp}} \propto \frac{\alpha R}{V}$$

A wide variety of possible solutions is available

• Al
$$T_{c} \approx 1.4 \text{K}$$
$$V_{gap} \approx 100 \text{GHz}$$

Uniform films
Long qp lifetime (~100µs)
Ideally suited for ground

• TiN
$$T_{c} \approx 0.4K$$

$$v_{gap} \approx 0.300GHz$$

Very high L_k First tests already carried out \rightarrow

NEP
$$\approx 5.10^{-18}$$
 W/Hz^{0.5} for $P_{opt} \approx 0.1$ pW

• NbSi
$$T_{c} \approx 0.8K$$

$$v_{gap} \approx 0.600GHz$$

Very high L_k A lot of know-how in France

Optimizing sensitivity: materials

• TiN $T_{c} \approx 0.4K$ $V_{gap} \approx 0.300GHz$

• NbSi

 $T_c \approx 0.8 \text{K}$

 $v_{gap} \approx 0.600 \text{GHz}$

No sharp cutoff is observed below v_{gap}

- Films are not uniform?
- 'Below-gap' energy levels?

To be investigated...

The Cosmic Rays

- In space, the detectors are always exposed to a flux of high-energy particles
- The induced glitches can lead to the loss of a substantial fraction of the data
- For example, Planck: ~ 1 glitch/s

Until now, full substrates have always been used for the KID!

Advantages of KID

1 – Presence of a band gap in the distribution of energy levels:

- Only photons and phonons of sufficiently high energy can break the Cooper Pairs
- For $T << T_c$ the detectors are well thermally isolated from the substrate
- They are not sensitive to thermal effects!

2 – Fast response:

- \bullet The response speed is determined by the quasiparticles lifetime, au_{qp}
- Typically, $\tau_{_{qp}}$ is of the order of few hundreds μs
- For the same rate of CR, less data are lost!

How to improve?

KID on membrane: hinder the phonons propagation, decrease the deposited energy

KID on multilayer: maximize the thermal isolation of the detectors

KID on lower resistivity substrates: speed up the downconversion of high energy phonons

KID on etched substrates: lower the effective area of the substrate

KID suspended via phonon deflectors: block phonon propagation

Or the 'backup solution':

Mosaic-like arrays: each CR hit affects only a sub-sample of the whole focal plane.

Bonus: cryogenics for space

- A lot of work is ongoing at the Institut Néel for the development of space-compatible refrigerator
- One option: closed cycle DR for zero gravity

• Pros: no B field, continuous...

• Cons: ³He pump to be tested

Bonus: cryogenics for space

- A lot of work is ongoing at the Institut Néel for the development of space-compatible refrigerator
- Second option: ADR

- Pros: higher maturity level
- Cons: magnetic field, recycling

Conclusions

- KID should be able to reach the sensitivity needed to be photon noise limited even from space
- We have already demonstrated NEP values below 10⁻¹⁷ W/Hz^{0.5}
- A deep study on the effect of Cosmic Rays is ongoing
- Multiple solutions are available that could contribute lowering the impact of CR on the data
- KID detectors are very good candidates for space based missions!
- The Institut Néel can also provide the know-how for space qualified cryogenics systems (dilution/ADR)

Additional noise sources

The bad news:

reality # theory!

Two-level systems (TLS)

Variations in the dielectric constant → excess in phase noise

Quasiparticles created by the readout signal power

Quasiparticles background → excees in the *g-r noise*

