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Absolute spectrometer or not?
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Why we should have a spectrometer on the 
next CMB space mission
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Cosmic Microwave Background Anisotropies

Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5



Cosmic Microwave Background Anisotropies

Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5

Let’s forget about 
this for a moment!



CMB provides another independent piece of information!

Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen, 2003, ApJ, 594, 67
Fixsen, 2009, ApJ, 707, 916  

COBE/FIRAS

• CMB monopole is 10000 - 100000 times  
larger than the fluctuations

T0 = (2.726± 0.001)K

Absolute measurement required!
One has to go to space...



Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Average spectrum



Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Only very small distortions of CMB spectrum are still allowed!

Average spectrum



No primordial distortion found so far!? Why are we 
at all thinking about this then?



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter: Tγ ~ (1+z) ↔ Tm ~ (1+z)²                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• continuous cooling of photons until redshift z ~ 150 via Compton scattering
• due to huge heat capacity of photon field distortion very small  ( Δρ/ρ ~ 10-10-10-9 )

• Heating by decaying or annihilating relic particles
• How is energy transferred to the medium?
• lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), ... 

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012)

• rather fast, quasi-instantaneous but also extended energy release

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)

• Cosmological recombination
•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cosmic Rays, etc) 

„high“ redshifts

„low“   redshifts
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Standard sources 
of distortions



Dramatic improvements in angular resolution and 
sensitivity over the past decades!

~ 7 degree 
beam

~ 0.3 degree 
beam

~ 0.08 degree 
beam



Dramatic improvements in angular resolution and 
sensitivity over the past decades!

~ 7 degree 
beam

~ 0.3 degree 
beam

~ 0.08 degree 
beam

Measurements of the CMB energy spectrum on the other 
hand are still in the same state as some ~20+ yrs ago!



PIXIE: Primordial Inflation Explorer

• 400 spectral channel in the frequency 
range 30 GHz and 6THz (Δν ~ 15GHz)

• about 1000 (!!!) times more sensitive than 
COBE/FIRAS 

• B-mode polarization from inflation (r ≈ 10-3)
• improved limits on µ and y 
• was proposed 2011 as NASA EX mission 

(i.e. cost ~ 200 M$)

Kogut et al, JCAP, 2011, arXiv:1105.2044

Average spectrum



Instruments:
• L-class ESA mission
• White paper, May 24th, 2013
• Imager:

- polarization sensitive
- 3.5m telescope [arcmin resolution 
at highest frequencies]

- 30GHz-6THz [30 broad (Δν/ν~25%) 
and 300 narrow (Δν/ν~2.5%) bands] 

• Spectrometer:
- FTS similar to PIXIE
- 30GHz-6THz (Δν~15 & 0.5 GHz) 

More information at:
http://www.prism-mission.org/

Polarized Radiation Imaging and Spectroscopy Mission 

Spokesperson: Paolo de Bernardis 
e-mail: paolo.debernardis@roma1.infn.it — tel: + 39 064 991 4271 

PRISM 
Probing cosmic structures and radiation  
with the ultimate polarimetric spectro-imaging  
of the microwave and far-infrared sky 

1

Some of the science goals:
• B-mode polarization from 

inflation (r ≈ 5x10-4)
• count all SZ clusters >1014 Msun

• CIB/large scale structure
• Galactic science
• CMB spectral distortions

http://www.prism-mission.org
http://www.prism-mission.org
http://www.prism-mission.org
http://www.prism-mission.org


NASA 30-yr Roadmap Study
(published Dec 2013)

How does the Universe work?

“Measure the spectrum of the 
CMB with precision several orders 
of magnitude higher than COBE 
FIRAS, from a moderate-scale 
mission or an instrument on CMB 
Polarization Surveyor.”



NASA 30-yr Roadmap Study
(published Dec 2013)

How does the Universe work?

“Measure the spectrum of the 
CMB with precision several orders 
of magnitude higher than COBE 
FIRAS, from a moderate-scale 
mission or an instrument on CMB 
Polarization Surveyor.”

CMB spectral distortions 
will be measured at some 
point and one should 
probably make sure to get 
a piece of the cake! 





        

     CMB distortions probe the 
thermal history of the 
Universe at z < few x 106
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     CMB distortions probe the 
thermal history of the 
Universe at z < few x 106

pre- post-recombination epoch
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Measurements of CMB spectrum will open a new 
unexplored window to the early Universe!
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Non µ/non-y part of the distortion 
probes time-dependence of 
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high-z SZ effect

Intensity signal for different heating redshifts

Response function: 
energy injection ⇒ distortion

CMB distortion signal contains much more information!

JC & Sunyaev, 2012, ArXiv:1109.6552; Khatri & Sunyaev, 2012
JC, 2013, ArXiv:1304.6120
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CMB spectrum adds another dimension to the problem!



Some of the cool things we will miss out on 
without absolute measurement!
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Average y-distortion from reionization

• Gas temperature T ≃ 104 K

• Thomson optical depth  𝜏 ≃ 0.1

• second order Doppler effect y ≃ few x 10-8

• structure formation / SZ effect (e.g., Refregier et al., 2003)   y ≃ few x 10-7-10-6



Fluctuations of the y-parameter at large scales

Example: 
Simulation of reionization process 
(1Gpc/h) by Alvarez & Abel

• spatial variations of the 
optical depth and 
temperature cause 
small spatial variations 
of the y-parameter at 
different angular scales

• could tell us more 
about the reionization 
sources and structure 
formation process

• additional independent 
piece of information! 

• Cross-correlations with 
other signals 



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1

• very complementary piece of information about early-universe physics

             

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Probe extra 
≃10 e-folds 
of inflation!



Spectral distortions could address additional 
small-scale power-spectrum questions

• primordial non-Gaussianity in the ultra-squeezed limit                          
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012; Biagetti et al., 2013)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Theoretical link between B-modes and small-scale 
power spectrum?



Spectral distortions could address additional 
small-scale power-spectrum questions

• primordial non-Gaussianity in the ultra-squeezed limit                          
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012; Biagetti et al., 2013)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Theoretical link between B-modes and small-scale 
power spectrum?

CMB Spectral distortions could add additional numbers beyond 
‘just’ the tensor-to-scalar ratio from B-modes!
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).

c� 0000 RAS, MNRAS 000, 000–000

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Kawasaki et al., 2005

Estimated 1σ detection 
limits for PIXIE
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rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.
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ror bars they seem rather constant. To show this more explicitly,
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A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P
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corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).

c� 0000 RAS, MNRAS 000, 000–000

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Direct measurement 
of particle lifetime!

             

Kawasaki et al., 2005

Estimated 1σ detection 
limits for PIXIE
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Another way to do CMB-based cosmology!
Direct probe of recombination physics!

Rubino-Martin et al, 2006 & 2008; JC & Sunyaev, 2006 & 2009



Planck Collaboration, 2013, paper XXII

Importance of recombination for inflation constraints

Without improved recombination 
modules people would be talking 
about different inflation models!

• Analysis uses refined recombination model (CosmoRec/HyRec)

(e.g., Shaw & JC, 2011)
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Other extremely interesting new signals

• Scattering signals from the dark ages 
(e.g., Basu et al., 2004; Hernandez-Monteagudo et al., 2007; Schleicher et al., 2009)

- constrain abundances of chemical elements at high redshift

- learn about star formation history

• Rayleigh / HI scattering signals
(e.g., Yu et al., 2001; Rubino-Martin et al., 2005; Lewis 2013)

- provides way to constrain recombination history

- important when asking questions about Neff and Yp

• Free-free signals from reionization
(e.g., Burigana et al. 1995; Trombetti & Burigana, 2013)

- constrains reionization history

- depends on clumpiness of the medium

Rayleigh scattering 

Constraints on various elements
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- important when asking questions about Neff and Yp

• Free-free signals from reionization
(e.g., Burigana et al. 1995; Trombetti & Burigana, 2013)

- constrains reionization history

- depends on clumpiness of the medium

Rayleigh scattering 

Constraints on various elements

Although all these effects give spectral-
spatial signals, an absolute spectrometer 
will help with channel cross calibration!



Conclusions

• CMB spectral distortions will open a new window to 
the early Universe

• new probe of the inflation epoch and particle physics

• complementary and independent source of 
information about our Universe not just confirmation

• in standard cosmology several processes lead to 
early energy release at a level that                         
will be detectable in the future

• extremely interesting future for                            
CMB-based science!



Conclusions

• CMB spectral distortions will open a new window to 
the early Universe

• new probe of the inflation epoch and particle physics

• complementary and independent source of 
information about our Universe not just confirmation

• in standard cosmology several processes lead to 
early energy release at a level that                         
will be detectable in the future

• extremely interesting future for                            
CMB-based science!

We should make use of 
all this information!





Comments for the discussion

• Main competition really only is PIXIE-2

• How will low angular resolution compromise 
their ability to reach the spectral sensitivity?

• Importance of high frequency channels for 
foreground modeling?

• If the spectrometer becomes part of CORE++ 
more detailed studies to determine the best 
spectral coverage will be needed

• need a working group on spectral-spatial 
distortion signals: these are also possible with 
just inter-channel calibration





Dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes

Keisler et al., 2011, ApJ

Damping Tail

nS = 0.9663 ± 0.0112

TestTest



Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!

Dissipation of small-scale acoustic modes



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)
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CMB Spectral distortions provide probe of Inflation physics!!!



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improving limits at smaller scales would rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improving limits at smaller scales would rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1

• very complementary piece of information about inflation physics

             

JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Probe extra 
≃10 e-folds 
of inflation!



Dissipation scenario: 1σ-detection limits for PIXIE

JC & Jeong, 2013
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Figure 10. 1�-detection limits for µ, µ1, µ2, and µ3 caused by dissipation
of small-scale acoustic modes for PIXIE-like settings. We used the standard
parametrization for the power spectrum with amplitude, A⇣ , spectral index,
nS, and running nrun around pivot scale k0 = 45 Mpc�1. The heavy lines are
for nrun = 0, while all other lines are for nrun = {�0.1, 0.1} in each group.
For reference we marked the case nrun = 0.1.

tor & 200 over PIXIE will be necessary, making this application of
spectral distortions very futuristic (see also Chluba 2013a).

The exact shape and amplitude of the small-scale power spec-
trum are, however, unknown, and a large range of viable early-
universe models producing enhanced small-scale power exist (see,
Chluba et al. 2012a, for examples). Observationally, the amplitude
of the small-scale power spectrum is limited to A⇣ . 10�7 � 10�6 at
wavenumber 3 Mpc�1 . k . few ⇥ 104 Mpc�1 (the range that is of
most interest for CMB distortions) using ultra-compact minihalos
(Bringmann et al. 2012; Scott et al. 2012). Although not absolutely
model-independent, this leaves lots of room for non-standard dissi-
pation scenarios.

Shifting the pivot scale to k0 = 45 Mpc�1 (corresponding to
heating around zdiss ' 4.5 ⇥ 105[k/103 Mpc�1]2/3 ' 5.7 ⇥ 104) and
using the standard parameterization for the power spectrum, we can
ask, how large A⇣(k0 = 45 Mpc�1) has to be to obtain a 1�-detection
of µ, µ1, µ2, and µ3, respectively. The results of this exercise are
shown in Fig. 10 for PIXIE settings. Around nS ' 1, detections of
µ are possible for A⇣ & 10�9, while A⇣ & 6 ⇥ 10�9 is necessary
to also have a detection of µ1. In this case two of the three model-
parameters can in principle be constrained independently. To also
access information from µ2 and µ3 one furthermore needs A⇣ &
10�7. In this case we could expect to break the degeneracy between
all three parameters.

These statements can be phrased in another way. Assuming
A⇣ ' 10�9, at least a factor of 5 improvement over PIXIE sensitivity
is needed to allow constraining combinations of two power spec-
trum parameters. To measure all p = {A⇣(k0 = 45 Mpc�1), nS, nrun}
independently an overall factor of ' 200 improvement over PIXIE
sensitivity is required, although in this (very conservative) case the
corresponding constraints would still not be competitive with those
reached at large scales using CMB anisotropy measurements.

We can also ask the question of how well the power spec-
trum parameters can be constrained for di↵erent cases. If only µ is
available, then the corresponding constraints on small-scale power
spectrum parameters remain rather weak, but could still be used to
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Figure 11. Parameter range of µ, µ1, and µ2 for dissipation scenarios. We
assumed PIXIE settings with 5 times its sensitivity, and power spectrum
amplitude A⇣ (k0 = 45 Mpc�1) = 5⇥10�8 (i.e. A ⌘ A⇣/5⇥10�8). The heavy
solid black lines are for nrun = 0, while the thin solid brown lines indicate
nS = const. The other light lines are for nrun = {�0.2,�0.1, 0.1, 0.2}. The
open symbols mark nS in steps �nS = 0.1. The blue symbols with error
bars (tiny in the upper panel) are for nS = {0.5, 1, 1.5, 1.8} and nrun = 0 and
illustrate how the error scales in di↵erent regions of the parameter space.
Measurements in the µ � ⇢1 plane can be used to fix the overall amplitude
of the small-scale power spectrum for a given pair nS and nrun, but no in-
dependent constraint on nS and nrun can be deduced. The constraints on ⇢1
and ⇢2 allow to partially break the remaining degeneracy.

limit the parameters space (e.g., Chluba et al. 2012b,a). If µ and µ1

can be accessed, we can limit the overall amplitude of the power
spectrum for given pairs of nS and nrun. This can be seen from the
upper panel of Fig. 11, where we illustrate the possible parameter
space of µ, ⇢1 / µ1/µ and ⇢2 / µ2/µ in some range of nS and
nrun. For the considered sensitivity, the errors on µ and ⇢1 are very
small, but since the overall amplitude, A⇣ , can be adjusted without
a↵ecting ⇢1, the measurement is not independent of nS and nrun.

If in addition µ2 can be constrained the degeneracy can be bro-
ken. As Fig. 11 (lower panel) indicates, the relative dependence
on nrun seems rather similar in all parts of parameter space: al-

c� 0000 RAS, MNRAS 000, 000–000

Notice different 
pivot scale
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Figure 10. 1�-detection limits for µ, µ1, µ2, and µ3 caused by dissipation
of small-scale acoustic modes for PIXIE-like settings. We used the standard
parametrization for the power spectrum with amplitude, A⇣ , spectral index,
nS, and running nrun around pivot scale k0 = 45 Mpc�1. The heavy lines are
for nrun = 0, while all other lines are for nrun = {�0.1, 0.1} in each group.
For reference we marked the case nrun = 0.1.

constrained by future SD measurements, it is convenient to con-
sider the shape and amplitude of the curvature power spectrum at
3 Mpc�1 . k . few ⇥ 104 Mpc�1 independent of the large-scale
power spectrum. We therefore change the question as follows: by
shifting the pivot scale to k0 = 45 Mpc�1 (corresponding to heating
around zdiss ' 4.5 ⇥ 105[k/103 Mpc�1]2/3 ' 5.7 ⇥ 104) and using
the standard parameterization for the power spectrum, how large
does the power spectrum amplitude, A⇣(k0 = 45 Mpc�1), have to
be to obtain a 1�-detection of µ, µ1, µ2, and µ3, respectively? The
results of this exercise are shown in Fig. 10 for PIXIE settings.
Around nS ' 1, detections of µ are possible for A⇣ & 10�9, while
A⇣ & 6⇥10�9 is necessary to also have a detection of µ1. In this case
two of the three model-parameters can in principle be constrained
independently. To also access information from µ2 and µ3 one fur-
thermore needs A⇣ & 10�7. In this case we could expect to break
the degeneracy between all three parameters with a PIXIE-type ex-
periment.

The detection limits depend both on the value of nS and nrun.
For nrun < 0, in total less energy is released so that larger A⇣
is required for a detection. For nS > 1, more power is found at
k > 45 Mpc�1, so that more energy is released in the µ-era. Con-
sequently, the µ-distortion can be detected for lower A⇣ . Similarly,
when increasing nS, less energy is released around z ' 5 ⇥ 104, so
that the value of µ1 decreases. Thus, larger A⇣ is required to warrant
a detection of µ1.

The above statements can be phrased in another way. Assum-
ing A⇣ ' 10�9 and nS ' 1, at least a factor of 5 improvement over
PIXIE sensitivity is needed to allow constraining combinations of
two power spectrum parameters. To determine all p = {A⇣ , nS, nrun}
independently an overall factor of & 200 improvement over PIXIE
sensitivity is required, although in this (very conservative) case the
corresponding constraints would still not be competitive with those
obtained using large-scale CMB anisotropy measurements.

We can also ask the question of how well the power spec-
trum parameters can be constrained for di↵erent cases. If only µ is
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Figure 11. Parameter range of µ, µ1, and µ2 for dissipation scenarios. We
assumed PIXIE settings with 5 times its sensitivity, and a power spectrum
amplitude A⇣ (k0 = 45 Mpc�1) = 5⇥10�8 (i.e. A ⌘ A⇣/5⇥10�8). The heavy
solid black lines are for nrun = 0, while the thin solid brown lines indicate
nS = const. The other light lines are for nrun = {�0.2,�0.1, 0.1, 0.2}. The
open symbols mark nS in steps �nS = 0.1. The blue symbols with error bars
(tiny in the upper panel) are for nS = {0.5, 1, 1.5, 1.8} and nrun = 0. They
illustrate how the error scales in di↵erent regions of the parameter space.
Measurements in the µ � ⇢1 plane can be used to fix the overall amplitude
of the small-scale power spectrum for a given pair nS and nrun, but no in-
dependent constraint on nS and nrun can be deduced. The constraints on ⇢1
and ⇢2 allow to partially break the remaining degeneracy.

available, then the corresponding constraints on small-scale power
spectrum parameters remain rather weak, but could still be used to
limit the parameters space (e.g., Chluba et al. 2012b,a). If µ and µ1

can be accessed, we can limit the overall amplitude of the power
spectrum for given pairs of nS and nrun. This can be seen from the
upper panel of Fig. 11, where we illustrate the possible parameter
space of µ, ⇢1 / µ1/µ and ⇢2 / µ2/µ in some range of nS and
nrun. For the considered sensitivity, the errors on µ and ⇢1 are very
small, but since the overall amplitude, A⇣ , can be adjusted without
a↵ecting ⇢1, the measurement is not independent of nS and nrun.

If in addition µ2 can be constrained, then the degeneracy can
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Modified µ-distortion in the squeezed limit

• Modes that dissipate energy have k1 ≈ k2 >> k3

• Non-Gaussian power spectrum → presence of positive 
long-wavelength mode enhances small-scale power

• More small-scale power → larger µ-distortion

• → Spatially varying µ-distortion caused by non-Gaussianity!             
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Non-vanishing µ-T correlation at large scales

• Might be detectable with PIXIE-type experiment for fNL > 103

Requirements
• precise cross-calibration of 

frequency channels

• higher angular resolution does 
not improve cumulative S/N                                              

Ganc & Komatsu, 2012
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.

c� 0000 RAS, MNRAS 000, 000–000

JC & Sunyaev, 2011, Arxiv:1109.6552
JC, 2013, Arxiv:1304.6120

Best-fit µ + y-distortion 
was removed
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.

c� 0000 RAS, MNRAS 000, 000–000

JC & Sunyaev, 2011, Arxiv:1109.6552
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Best-fit µ + y-distortion 
was removed

residual distortion 
contains information 
about lifetime!
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of

48004.8x10
6

2x10
6

5x10
5

10
5

5x10
4

2x10
4

10
4

2x10
5

z
X

10
-2

10
-1

10
0

10
1

f X
 /

 z
X

  
[ 

eV
 ]

µ
µ

1
µ

2
µ

3

10
6

10
7

10
8

10
9

10
10

10
11

10
12

t
X

 [ sec ]

10
-8

10
-7

10
-6

10
-5

∆
ρ

γ
/ 

ρ
γ

3
He / D 

 bound

Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).

c� 0000 RAS, MNRAS 000, 000–000
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though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P
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corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1
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the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Direct measurement 
of particle lifetime!
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This is where it 
matters most!
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• change in ‘tilt’ of CMB power 
spectra ↔ width of visibility 
function ↔ ns & Ωbh2

• ‘wiggles’  ↔ change in 
position of last scattering 
surface ↔ Ωbh2

Shaw & JC, MNRAS, 2011



Planck Collaboration, 2013, paper XXII

Importance of recombination for inflation constraints

Without improved recombination 
modules people would be talking 
about different inflation models!

• Analysis uses refined recombination model (CosmoRec/HyRec)

(e.g., Shaw & JC, 2011)



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics

If something unexpected or non-standard happened:
  non-standard thermal histories should leave some measurable traces
  direct way to measure/reconstruct the recombination history!
  possibility to distinguish pre- and post-recombination y-type distortions
  sensitive to energy release during recombination
  variation of fundamental constants



Dark matter annihilations / decays

JC, 2009, arXiv:0910.3663
•  Additional photons at all frequencies
•  Broadening of spectral features

•  Shifts in the peak positions




