

Science with clusters

J.-B. Melin CEA Saclay, France

2014 Feb 10

Clusters as cosmological probes

Planck 2013 results XX

Clusters as cosmological probes

Planck 2013 results XX

Clusters as cosmological probes

- sky coverage: 75%
- Planck 2013 primary CMB cosmology (except sig8=0.75)
- Tinker mass function

- sky coverage: 75%
- Planck 2013 primary CMB cosmology (except sig8=0.75)
- Tinker mass function
- Tangential 10*10deg maps
- CMB, Galaxy (dust from Planck 857GHz map, lat=30°, grey body spectrum),
- Gaussian beams, homogeneous white noise
- Matched Multi Filter for noise estimation as a function of (flux,size)

- sky coverage: 75%
- Planck 2013 primary CMB cosmology (except sig8=0.75)
- Tinker mass function
- Tangential 10*10deg maps
- CMB, Galaxy (dust from Planck 857GHz map, lat=30°, grey body spectrum),
- Gaussian beams, homogeneous white noise
- Matched Multi Filter for noise estimation as a function of (flux,size)
- Y-M from Planck 2013 results XX self-similar evolution (in redshift) hydro bias on the mass (20%)

Simulations

Planck ⇒ nominal mission blue book sensitivity COrE ⇒ M3 proposal PRISM ⇒ L2-L3 proposal

Expected cluster counts from COrE and PRISM

Simulations

Planck ⇒ nominal mission blue book sensitivity COrE ⇒ M3 proposal PRISM ⇒ L2-L3 proposal

M4 ⇒3 types "M4-COrE" "M4-PRISM req." "M4-PRISM goal"

from J. Delabrouille

ν	dv/v	resol.	phot. noise	ΔI_{det}	Δy_{SZ} / det.	N _{det}	comment	main CO lines
(GHz)		arcmin.	$(\mu K.s^{1/2})$	(µK.arcmin)	(10 ⁻⁶ y _{SZ} .arcmin)	(req.)		
45	0.33	23.3'	30.47	61	11.8	2	radio-source monitor	none
75	0.20	14.0'	34.27	69	14.6	18	radio-source monitor	none
105	0.14	10.0'	38.74	77	19.5	106	radio-source monitor	¹³ CO
135	0.11	7.8'	44.60	89	28.8	504	SZ channel	none
165	0.091	6.4'	52.64	103	51	1066	SZ channel	none
315	0.048	3.3'	195.0	390	90	882	SZ channel	none
375	0.040	2.8'	403.2	806	113	1002	SZ channel	none
555	0.35	1.9'	1371	2743	174	62	dust / CIB /CO monitor	¹² CO and ¹³ CO
675	0.29	1.6'	8242	16484	767	66	dust / CIB /CO monitor	¹² CO and ¹³ CO
795	0.25	1.3'	51952	103900	3812	100	dust / CIB /CO monitor	¹² CO and ¹³ CO

Table 4: Proposed channels for SZ effect observation with a COrE-type instrument. Requirements can be met with 3808 detectors. The goal of detecting nearly all clusters in the Hubble volume cannot be reached with this configuration.

"M4-COrE" ⇒ ~as many clusters as eROSITA and Euclid

from J. Delabrouille

ν	dv/v	resol.	phot. noise	ΔI_{det}	Δy_{SZ} / det.	N _{det}	N _{det}	comment	main CO lines
(GHz)		arcmin.	$(\mu K.s^{1/2})$	(µK.arcmin)	(10 ⁻⁶ y _{SZ} .arcmin)	(req.)	(goal)		
78	0.25	6.5'	30.6	61	13.2	6	86	radio-source monitor	none
90	0.35	5.6'	25.2	50	11.6	8	104	radio-source monitor	none
100	0.2	5.0'	33.0	66	16.0	16	274	radio-source monitor	none
135	0.28	3.7'	28.2	56	18.2	46	788	SZ channel	none
143	0.33	3.5'	26.30	52	18.6	42	736	SZ channel	none
340	0.35	1.5'	92.58	185	33.7	26	444	SZ channel	¹² CO and ¹³ CO
395	0.20	1.3'	226.7	453	56.0	54	920	SZ channel	none
445	0.35	1.1'	316.4	633	60	26	422	dust / CIB / CO monitor	¹² CO and ¹³ CO
520	0.20	0.97'	1117	2235	158	36	590	dust / CIB monitor	none
600	0.35	0.84'	2541	5083	284	18	292	dust / CIB / CO monitor	¹³ CO

Table 5: Proposed channels for SZ effect observation with a PRISM-type instrument. Requirements can be met win on 278 detectors in 10 frequency channels. Reaching the goal of detecting nearly all galaxy clusters in the Hubble volume requires 4656 detectors.

"M4-PRISM req." ⇒ requirement
(~as many clusters as eROSITA and Euclid)

"M4-PRISM goal" ⇒more clusters (>500,000)

Expected cluster counts for a M4 mission

Expected cluster counts for a M4 mission

From Hervé Dole

Planck z>2 structures

- how clusters form ? search for z>1 clusters
- what are ISM properties at z>2 ?
- hundreds of Planck high-z candidates at high Galactic latitude
- 220+ Planck sources were followed-up by Herschel/SPIRE at higher angular resolution, and Spitzer
- all show photo-z z > 1.5
- are either z>2.2 strongly gravitationally lensed galaxies
- or could be z> 1.5 galaxy clusters in their burst phase, containing IR galaxies

Dole et al., in prep Nesvadba et al., in prep Hervé Dole, IAS - Jan 2014

Individual temperature measurement (relativistic tSZ effect)

Individual temperature measurement (relativistic tSZ effect)

Individual velocity measurement (kSZ effect)

Individual velocity measurement (kSZ effect)

Individual velocity measurement (kSZ effect)

Accessing cluster key properties without any follow-up?

- Temperature ⇒ should be possible for the hottest clusters using the relativistic SZ effect HIGH SENSITIVITY NEEDED
- Mass ⇒ CMB lensing reconstruction at the position of the clusters possible HIGH RESOLUTION NEEDED
- Redshift ⇒ dust in clusters (see Planck Intermediate Paper XI) could be used to get the redshift or GROUND BASED FOLLOW-UPS...

Space vs. ground A Planck vs. SPT/ACT like case ?

- M4 (2026): a few µK arcmin @ [100,150]GHz, all-sky
- CMB S4 (>2021): 1 μK arcmin @ 150GHz, ~½ sky
- Space: frequency & sky coverage
- Ground: resolution & sensitivity
- ⇒ Complementary sciences

Possible space synergies

- Euclid (optical) 2020, eROSITA (X-ray) 2015
- M4 (submillimetrer) 2026
 ⇒3 all-sky experiments (multi-wavelength analyses)
- Athena (X-ray) 2028

 \Rightarrow Follow-ups of high z (z>2) detections

- "M4-COrE" or "M4-PRISM req." can detect ~10⁵ clusters (~Euclid or eROSITA counts), "M4-PRISM goal" can detect >5 times more.
- tens or hundreds between 2<z<4 depending on Y-M evolution
- M_{500} lim(z) below 10¹⁴ M_{sun}
- SZ spectrum measurement
- Temperature measurement for massive clusters (M_{500} >5 10¹⁴ M_{sun})
- Cluster mass from CMB lensing (high sens./res. required)

 \Rightarrow Study of the 2<z<4 cluster population (high sens./res. required)

⇒ Study of cluster peculiar velocities with kSZ (high sens./res. required)

• **SZ** science return scales with **resolution** and **sensitivity** ("M4 PRISM goal")