## **Rotating HWP**

pros and cons

Jacques Delabrouille CNRS – Laboratoire APC, Paris

## Measuring polarisation

 A single measurement with a polarimeter measures a mixture of intensity and polarisation

$$I + Q\cos 2\alpha + U\sin 2\alpha$$

- Obtaining polarisation requires differences between different such data samples
  - different detectors Bandpass mismatch
  - same detector with ≠ orientation Beam asymetry
  - (at ≠ times low-frequency noise)

### Motivations

- Modulation of polarisation
  - low-frequency noise
  - asymmetric beams

Without HWP

With HWP

t<sub>0</sub>

#### Motivations

- Modulation of polarisation
  - low-frequency noise
  - asymmetric beams



### Motivations

- Modulation of polarisation
  - low-frequency noise
  - asymmetric beams



#### The case for no HWP



- Not required
  - Degrades the performance
  - Source of complexity
  - Technological challenge

- Low-f noise removed by map-making
  - require redundancy and  $f_{
    m spin} \geq f_{
    m knee}$
- Bandpass issues are solved by making singledetector maps (not possible with Planck)

Beams: reconvolution possible

Map of  $I + Q\cos 2\alpha + U\sin 2\alpha$ 

convolved with an elliptical beam



Map of  $I + Q\cos 2\alpha + U\sin 2\alpha$ 

convolved with an elliptical beam

Map of  $I + Q\cos 2\alpha + U\sin 2\alpha$ 

convolved with a circular beam









- Generalisable for real scanning
  - If every pixel is seen with all possible angles

One such set of observations for each angle

- Generalisable for real scanning
  - If every pixel is seen with all possible angles



- Generalisable for real scanning
  - For any scan strategy with parallel scans



• Leakage of I into polarization maps  $\propto a_{lm} \, (b_l^1 - b_l^2)$ 



Beam asymmetry does not matter much for small beams

## Calibrate leakage



$$s(p) \simeq I(p) + \eta \left(Q_{\parallel}(p)\cos 2\psi + U_{\parallel}(p)\sin 2\psi\right) \\ + a_{\parallel}\nabla_{\parallel}^{2}I(p) + a_{\perp}\nabla_{\perp}^{2}I(p) + a_{\times}\nabla_{\perp}\nabla_{\parallel}I(p) \\ + b_{\parallel}\nabla_{\parallel}\left[I(p) + \eta \left(Q_{\parallel}(p)\cos 2\psi + U_{\parallel}(p)\sin 2\psi\right)\right] \\ + b_{\perp}\nabla_{\perp}\left[I(p) + \eta \left(Q_{\parallel}(p)\cos 2\psi + U_{\parallel}(p)\sin 2\psi\right)\right] \\ + 2\delta \eta \left[Q_{\parallel}(p)\sin 2\psi + U_{\parallel}(p)\cos 2\psi\right] \\ + \epsilon I(p) + \xi \left[Q_{\parallel}(p)\cos 2\psi + U_{\parallel}(p)\sin 2\psi\right].$$
 Pol. orientation

+ polar. efficiency

### The case for no HWP

Not required



- Degrades performance
  - Source of complexity
  - Technological challenge

## Degrades performance

- Frequency coverage
- Sensitivity
- Angular resolution

# Frequency bands



Figure 14: Left: Free-standing RHWP. Right: Dielectric substrate RHWP

# Degrades performance



#### target CMB sensitivity: 2μK.arcmin

# Minimal design with HWP (COrE)

| ν     | dv/v  | resol.  | $N_{ m det}$ | $\Delta P_{map}$   | comment             |
|-------|-------|---------|--------------|--------------------|---------------------|
| (GHz) |       | arcmin. |              | $(\mu K.arcmin)$   |                     |
| 45    | 0.33  | 23.3'   | 6            | 35.1               | synchrotron monitor |
| 75    | 0.20  | 14.0'   | 86           | 10.6               | synchrotron monitor |
| 105   | 0.14  | 10.0'   | 744          | $\left(4.0\right)$ | boundary channel    |
| 135   | 0.11  | 7.8'    | 996          | 4.0                | CMB channel         |
| 165   | 0.091 | 6.4'    | 1336         | 4.0                | CMB channel         |
| 195   | 0.077 | 5.4'    | 1620         | 4.5                | boundary channel    |
| 225   | 0.067 | 4.7'    | 1350         | 6.2                | dust monitor        |
| 285   | 0.053 | 3.7'    | 750          | 14.5               | dust monitor        |
| 375   | 0.040 | 2.8'    | 470          | 52.6               | dust monitor        |

4000-5000 detectors for 2-2.4 μK.arcmin final CMB sensitivity

100 to 800 synchrotron detectors 2500 dust detectors (!)

≈ 7500 detectors

#### target CMB sensitivity: 2μK.arcmin

## Minimal design without HWP

| ν     | dv/v | resol.  | $N_{\text{det}}$ | $\Delta P_{map}$ | comment             |
|-------|------|---------|------------------|------------------|---------------------|
| (GHz) |      | arcmin. |                  | (μK.arcmin)      |                     |
| 60    | 0.35 | 8.4'    | 10               | 24.7             | synchrotron monitor |
| 68    | 0.35 | 7.4'    | 18               | 17.7             | synchrotron monitor |
| 90    | 0.35 | 5.6'    | 72               | 8.4              | synchrotron monitor |
| 115   | 0.35 | 4.4'    | 316              | 4.0              | boundary channel    |
| 143   | 0.33 | 3.5'    | 336              | 4.0              | CMB channel         |
| 185   | 0.35 | 2.7'    | 410              | 4.0              | CMB channel         |
| 225   | 0.33 | 2.2'    | 660              | 4.0              | boundary channel    |
| 280   | 0.33 | 1.8'    | 306              | 8.8              | dust monitor        |
| 340   | 0.35 | 1.5'    | 160              | 20.7             | dust monitor        |
| 445   | 0.35 | 1.1'    | 90               | 94.0             | dust monitor        |

1700 detectors for 2 μK.arcmin final CMB sensitivity

100 synchrotron detectors

500 dust detectors (!)

≈ 2300 detectors

## Degrades angular resolution

- 1.2m aperture: COrE
  - about 6' for CMB
  - 6' and 3' for SZ
- 2.5m aperture (without HWP)
  - about 3' for CMB,
  - 3' and 1.5' for SZ

### The case for no HWP

- Not required
- Degrades performance



- Source of complexity
  - Technological challenge

## Source of complexity

- The HWP will not only modulate polarisation
  - Pointing
  - Sidelobe pickup
  - All calibration parameters

**—** ...

 We will have to calibrate everything as a function of the HWP angle (!)

# Example: pointing modulation

Without HWP

With HWP



# Example: pointing modulation

Without HWP



With HWP



# Example: pointing modulation

Without HWP



With HWP



#### The case for no HWP

- Not required
- Degrades the performance
- Source of complexity



# Technological challenge

- Can we make a large HWP (G. Pisano's talk)
- Can we rotate it at 30-40 K

Impact on passive cooling?



### Conclusion

- Both options are possible This critical question impacts all of the design and target science!
- Nice to have in theory but source of complexity
- My proposed baseline: no HWP
  - Explain why in the proposal, using theoretical arguments
  - Demonstrate it with simulations in the phase A study
- Keep it however as an option?