

ESA ITT AO/1-7136

Large Radii Half-Wave Plate (HWP) Development

G. Pisano, B. Maffei, M.W. Ng, V. Haynes, M. Brown, F. Noviello University of Manchester

P. de Bernardis, S. Masi, F. Piacentini, M. Salatino, L. Pagano Universita' di Roma 'La Sapienza'

> B. Ellison, M. Henry Rutherford Appleton Laboratory

COrE / PRISM workshop for a M4 ESA Mission, APC - Paris, 10-11/02/2014

Science & Technology Facilities Council Rutherford Appleton Laboratory

Task 1 - HWP requirements

Task 2 - Concept Design Selection

Task 3 - Modulator baseline Design and Analysis

- RF preliminary design
- Thermo-mechanical design

Task 4 - Critical Breadboards Definition and Analysis

- RF critical breadboards
- Thermo-mechanical critical breadboards

Task 5 - Critical Bread-boards Manufacture and Tests

- RF critical breadboards manufacture and room temperature tests
- RF critical breadboards cryogenic tests
- Thermal critical breadboards manufacture and tests
- Mechanical critical breadboards manufacture and tests

Task 6 - Modulator baseline Design Update

- Detailed RF analysis
- Detailed Thermo-Mechanical analysis

Task 7 - HWP Manufacture and Tests

- Waveplate manufacture and room temperature RF tests
- Waveplate RF cryogenic tests
- Rotation mechanism manufacture and cryogenic tests
- HWP system cryogenic tests

Task 8 - Conclusion and Development Plan

Science & Technology Facilities Council Rutherford Appleton Laboratory

HWP systematics

$$\mathbf{J}_{\rm hwp}^{\rm ideal} = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right)$$

$$\mathbf{J}_{\mathrm{hwp}} = \begin{pmatrix} 1+h_1 & \zeta_1 e^{i\chi_1} \\ \zeta_2 e^{i\chi_2} & -(1+h_2)e^{i\beta} \end{pmatrix}$$

O-Dea et al. 2007

- $h_1 \& h_2$: departure from unitary transmission along HWP axes

$$h_{1,2} = \sqrt{T_{C,L}} - 1$$

- $\beta = \psi - \pi$: departure of the differential phase-shift ψ from its ideal value of π

- $\zeta_1 \& \zeta_2$: cross-polarization response, leakage between axes

 $x-\text{Pol}(dB) = 20 \log_{10} \zeta$

\rightarrow Analysis of the HWP systematics impact on the science

Science & Technology Facilities Council Rutherford Appleton Laboratory

HWP Requirements

Systematic	Parameters	Requirement	Goal
HWP efficiency	η_{HWP}	>76%	>80%
Phase shift	β	$< 40^{\circ}$	$< 30^{\circ}$
	σ_eta	$< 0.17^{\circ} / \sin\beta$	$< 0.07^{\circ} / \sin \beta$
Transmission	$ \Delta h = h_1 - h_2 $	< 0.05	< 0.05
	$ h_1 , h_2 $	< 0.12	< 0.1
	$\sigma_{h_1}, \sigma_{h_2}$	< 0.02	< 0.02
	T_C	> 0.76	> 0.8
	T_L	> 0.76	> 0.8
	$ T_C - T_L $	< 0.1	< 0.1
	σ_{T_C,T_L}	< 0.04	< 0.04
Cross polarization	ζ_1,ζ_2	< 0.02	< 0.02
	σ_{ζ_1,ζ_2}	< 0.002	< 0.002
	σ_{ζ_1,ζ_2}	< 0.002	< 0.002
	x-Pol	-34 dB	-34 dB
	$\sigma_{ ext{x-Pol}}$	-50 dB	-50 dB
HWP induced ellipticity	ε_{HWP}	$<\!2\%$	$<\!1\%$
$\mathrm{Flatness}^{a}$	Δx	$<20~\mu{\rm m}$	$<20~\mu{\rm m}$
Modulated dis-homegeneity	h^{mod}	< 0.001	< 0.001
Thermal stability	$\operatorname{NET}_{\operatorname{HWP}}$	$\lesssim rac{1 \mu \mathrm{K} / \sqrt{\mathrm{Hz}}}{\mathcal{R}}$	$\lesssim rac{1 \mu \mathrm{K} / \sqrt{\mathrm{Hz}}}{\mathcal{R}}$

a. The rotating HWP shall be compatible with operation at temperatures below 50K, with a goal of 10 K.

- b. Cooling of the HWP shall be achieved by conductive/radiative heat transfer only.
- c. The dissipation of the HWP including mechanism shall be below 100mW at 50K with a goal of 10mW at 10K.

Task 1 - HWP requirements

Task 2 - Concept Design Selection

Task 3 - Modulator baseline Design and Analysis

- RF preliminary design
- Thermo-mechanical design

Task 4 - Critical Breadboards Definition and Analysis

- RF critical breadboards
- Thermo-mechanical critical breadboards

Task 5 - Critical Bread-boards Manufacture and Tests

- RF critical breadboards manufacture and room temperature tests
- RF critical breadboards cryogenic tests
- Thermal critical breadboards manufacture and tests
- Mechanical critical breadboards manufacture and tests

Task 6 - Modulator baseline Design Update

- Detailed RF analysis
- Detailed Thermo-Mechanical analysis

Task 7 - HWP Manufacture and Tests

- Waveplate manufacture and room temperature RF tests
- Waveplate RF cryogenic tests
- Rotation mechanism manufacture and cryogenic tests
- HWP system cryogenic tests

Task 8 - Conclusion and Development Plan

Polarisation modulator types

Reflective Modulators

→ ITT goal to manufacture a 120 cm diameter HWP prototype

Half Wave Plate options

Fundamental aspects of the HWP technologies that are key for their trade-off:

- HWP manufacturability
- HWP Radio Frequency (RF) performance
- HWP suitability for cryogenic and mechanical operation in a space environment

Manufacture	Transmission modulators				Reflection modulators			
Mechanical modulation	Rotation				Rotation Translation			nslation
Material	Birefringent crystal Metal grids			Metal grids + Flat mirror				
Modulator type	Single Plate	Multi-Plate Pancharatnam	Air-gap Mesh-HWP	Embedded Mesh HWP	Air-gap Reflective HWP	Embedded Reflective HWP	Variab. delay Polarization Modulator (VPM)	Translational Polarization Rotator (TPR)
Modulator sketch	B-HWP →	BP-HWP →	M-HWP →	EM-HWP →	R-HWP →	ER-HWP →	VPM ↓	TPR
Material availability	Limited to ~30 cm Ø (Sapphire)	Limited to ~30 cm Ø (Sapphire)	> 120 cm ∅ (Cu on PP)	> 120 cm \varnothing (Cu on PP)	> 120 cm ∅ (Cu on PP)	> 120 cm \varnothing (Cu on PP)	> 120 cm ∅ (Cu on PP)	> 120 cm ∅ (Cu on PP)
Mechanical robustness	High	High	Very Low	Medium	Very Low	High	Very Low	Medium
Relative Mass (without mechanism)	High (crystal)	High (crystal)	Very low (thin plastic)	Low (bulk plastic)	High (mirror)	High (mirror)	High (mirror)	High (mirror)
Maximum achievable diameter at JBCA	~30 cm	~30 cm	52 cm	33 (52 cm)	52 cm	33 (52 cm)	52 cm	33 (52 cm)
			120 cm		120 cm		120 cm	
Group expertise	Yes	Yes	Yes	Yes	Yes	Yes	NASA coll.	Yes

Advantage

Disadvantage

Not usable

Grant goal

Manufacture issues

- Birefringent crystals limited dimensions (~30cmØ)
- Free standing grids and substrates fragility for large diameters
- ER-HWP, EM-HWP and TPR all share same photolithographic technology

RF performance	Transmission modulators				Reflection modulators			
Mechanical modulation	Rotation			Rotation Translation			nslation	
Material	Birefrin	gent crystal	Metal grids Metal grids + Flat m			ds + Flat mirror		
Modulator type	Single Plate	Multi-Plate Pancharatnam	Air-gap Mesh-HWP	Embedded Mesh-HWP	Air-gap Reflective HWP	Embedded Reflective HWP	Variab. delay Polarization Modulator (VPM)	Translational Polarization Rotator (TPR)
Modulator sketch	B-HWP	BP-HWP	M-HWP	EM-HWP	R-HWP →	ER-HWP →	VPM \$	TPR
Modulated Stokes parameters	Q & U	Q & U	Q & U	Q & U	Q & U	Q & U	Q or U	Q & U
Maximum bandwidth	Narrow	Very Broad ~110%	Broad ~80%	Broad ~100% T3.1	Narrow	Narrow T3.1	Narrow	Narrow
Multiple sub-bands	Need periodic ARC	Limited to max BW	Limited to max BW	Lim. to max BW T3.1	Periodic	Periodic T3.1	Periodic	Limited by QWP BW
Modulation efficiency	> 99%	> 99%	> 99%	> 99% T4.1a,b, 5.1,2	> 90%	> 90% T4.1a,b, 5.1,2	> 90%	> 90%
Transmission / Differential transmission	> 90 % < 1 %	> 90 % < 1 %	> 90 % < 1 %	> 90 % / < 1 % T4.1a,b, 5.1,2	Not applicable	Not applicable	Not applicable	Not applicable
Reflection/ Differential Reflection	3% 0.1%	3% 0.1%	4% 2%	< 4% / 2% T4.1a,b, 5.1,2	> 98 % < 1 %	> 98% / < 2% T4.1a,b & 5.1	> 98 % < 1 %	>98% / <2%
On-axis Average Cross-Polarisation	< -20 dB (6% BW)	< -20 dB (110% BW)	< -20dB (80%BW)	-35dB (25% BW) T4.1a,b, 5.1,2	< -30dB	Not available T4.1a,b & 5.1	Not Available	Not available
Co-Polar beam impact Ellipticity	Not available	Not available	Not available	~1% (25% BW) T4.1c & 5.1	<1%	Not available T4.1c & 5.1	Not available	Not available
Cross-Polar beams	Not available	~ -30dB	Not available	<-35dB (25%) T4.1c & 5.1	< -30dB	Not available T4.1c & 5.1	Not available	Not available
Flatness / Homogeneity	Very high	High	High	High T4.1d & 5.1	High	High T4.1d & 5.1	High	High
Advantage		Disadvantage		No	t usable		Will be verifie	ed by Task #

RF performance issues

- Periodic narrow bands across all COrE channels
- Ellipticity & Cross-pol at low levels in air-gap version

- Bandwidth presently limited to ~100% (180% required)
- Low Ellipticity & Cross-pol

• Limited bandwidth, similar to EM-HWP

Science & Technology Facilities Council Rutherford Appleton Laboratory

Cryo-mechanical	Transmission modulators				Reflection modulators			
Mechanical modulation	Rotation			Rotation Translation			nslation	
Material	Birefringent crystal Metal grids			Metal grids + Flat mirror				
Modulator type	Single Plate	Multi-Plate Pancharatnam	Air-gap Mesh-HWP	Embedded Mesh HWP	Air-gap Reflective HWP	Embedded Reflective HWP	Variab. delay Polarization Modulator (VPM)	Translational Polarization Rotator (TPR)
Modulator sketch	B-HWP →	BP-HWP →	M-HWP 	EM-HWP →	R-HWP →	ER-HWP →	VPM \$	TPR
Modulation mechanism	Cryogenic mechanical rotator					Cryogenic mechanical translator		
Mechanism cryogenic heat dissipation	Low Task 4.2d & 5.3						Not Available	
Waveplate robustness to cooling cycles	Low (ARC problems	Low (ARC problems)	High	High T4.2a & 5.3	High	High T4.2a & 5.3	High	High
Waveplate gradient Temperature	Low	Low	Not Available	Not available T4.2b & 5.3	Not Available	Not available T4.2b & 5.3	Not Available	Not Available
Waveplate low temperature emissivity	Sapphire < 1%	Sapphire < 1%	Low	Low	Low	Low	Low	Low
F				T4.2c & 5.3		T4.2a & 5.3		
Waveplate low T differential emissivity	Low	Low	Low	Low T4.2c & 5.3	Low	Low T4.2c & 5.3	Low	Low

Advantage

Disadvantage

Not usable

Cryo-mechanical issues

- Requires a relatively compact cryogenic rotation mechanism that can be tested in a small cryostat. It can be compatible with room temperature motor, via a simple shaft.
- Expertise with these systems.
- Thermal gradients across plate strongly reduced by mirror.
- Requires large cryogenic rotation mechanism and associated large dewar for testing
- Thermal gradients across plate to be investigated

- Requires translation mechanism (no expertise within collab.)
- Thermal gradients across plate to be investigated

Task 2 Conclusions

Based on the previous considerations, we defined:

Task 1 - HWP requirements

Task 2 - Concept Design Selection

Now

Task 3 - Modulator baseline Design and Analysis

- RF preliminary design
- Thermo-mechanical design

Task 4 - Critical Breadboards Definition and Analysis

- RF critical breadboards
- Thermo-mechanical critical breadboards

Task 5 - Critical Bread-boards Manufacture and Tests

- RF critical breadboards manufacture and room temperature tests
- RF critical breadboards cryogenic tests
- Thermal critical breadboards manufacture and tests
- Mechanical critical breadboards manufacture and tests

Task 6 - Modulator baseline Design Update

- Detailed RF analysis
- Detailed Thermo-Mechanical analysis

Task 7 - HWP Manufacture and Tests

- Waveplate manufacture and room temperature RF tests
- Waveplate RF cryogenic tests
- Rotation mechanism manufacture and cryogenic tests
- HWP system cryogenic tests

Task 8 - Conclusion and Development Plan

Science & Technology Facilities Council Rutherford Appleton Laboratory

RF preliminary design

Under study:

- Substrate impact on bandwidth (compared to air-gap version)
- Anti-reflection coatings, multiple dielectric layers, modified grids
- Impact on ellipticity and cross-polar beam
- Filtering for polarisation efficiency improvement

Science & Technology Facilities Council Rutherford Appleton Laboratory

Ellipticity and Cross-polar beam simulations

Preliminary results Air-gap RHWP v = 120 GHz

$\hat{\nabla}$

Ellipticity < 1% Cross-pol < -30dB

Science & Technology Facilities Council Rutherford Appleton Laboratory

Accurate RF Testing Example (100 GHz)

Plano convex lens

Transversal cut - Intensity

Workshop 2013

Longitudinal cut

Science & Technology Facilities Council Rutherford Appleton Laboratory

Rotator design concept

- Al honeycomb plate (for flatness, mass & inertia) with deposited ER-HWP: < 20 kg,
 < 5 kg m² rotating assembly. Lower mass & I with CFRP, also possible.
- Flexible Cu straps for temperature uniformity
- Latched at launch
- Low conductivity shaft connecting HWP assembly to motor in service module (conductivity of shaft << conductivity of supports: (8 mW with no intermediate heat sinks, less with intermediate straps to Vgrooves))
- At the moment, ϕ 1.5m RHWP looks feasible

Facilities Upgrade at JBCA

- New enlarged cleanroom (ready)
- Large evaporator (ordered, under manufacture)
- Etching tanks for photolithography (assembling)
- Large exposure box (assembling)
- Large vacuum press oven (designed)
- Photoresist spray XY table (ongoing tests)

Clean room enlargement

JBCA Manchester

Manchester University investment

Science & Technology Facilities Council Rutherford Appleton Laboratory

Custom made evaporator for metal coating (1.4m diameter)

Large evaporator example

Shanghai Vakia Coating Technology Co. Ltd.

Vacuum chamber

Rotary and diffusion pumps

Science & Technology Facilities Council Rutherford Appleton Laboratory

UV exposure box

UV exposure table for 1.2m samples

UV LED power supply and controller

Photolithography etching

Processing tanks and support frame for 1.2m samples

Uniform flow liquid circulation system

Science & Technology Facilities Council Rutherford Appleton Laboratory

Very Large Press Oven

Internal shields structure

Conclusions

- Project officially started in October $2013 \rightarrow ~ 1$ yr left
- On-going development of facilities for unprecedented large diameter devices
 - ightarrow From 30cm to 120cm arnothing
- Embedded Reflective HWP design selected as baseline option
 - Channels bandwidth might be improved adding grids, modifying geometries
 - \rightarrow Non-periodic wider sub-bands
- ER-HWP systematics experimental characterisation
 - Very accurate lab measurements will be performed to validate our models
- Development of the rotation mechanism
 - Cryogenic lab measurements will be carried out
 - Rotator for a ~1.5m \varnothing waveplate looks feasible
- Waveplate dimensions
 - In principle, same type of instrumentation to manufacture >1.5m \oslash