Reionization

Carlo Burigana @ INAF/IASF Bologna

80 yrs later 1934 → 2014

COrE/PRISM Workshop for an M4 ESA Mission Paris, February 10-11, 2014

Scientific themes for future microwaves to far-IR missions

Primordial <u>CMB B-modes</u>, high precision CMB T (absolute!) and <u>E</u>
 CMB spectral distortions

<u>thermal history</u>, energy exchanges between CMB and matter

<u>reionisation</u>, decaying dark-matter particles, small scale primordial P(k)

 \Box All crucial/unique for \rightarrow early Universe & fundamental physics

3D cosmic structures:

- A complete census of galaxy clusters (hot baryons and mass up to z>3)
- CMB lensing (projected mass)
- The CIB and dusty galaxies (up to z>6) dust, AGNs and interplay, P(k) in shells
- 3D cosmic velocity flows
- All phases of the galactic interstellar medium:
 - Dust (thermal, spinning, size and chemical composition)
 - Cosmic rays (synchrotron components)
 - Gas (neutral and ionised), free-free, atoms and molecules, molecular clouds,
 - Magnetic field via polarisation of dust (and synchrotron)

Observables vs physical mechanisms

- Thomson scattering
 - Anisotropies, mainly
 - EE, BB, TE modes
 - Comptonization distortions
- Free-free
 - Distortions (intermediate/long wavelengths)
 - Link with clumping

5 Measuring B-modes

- Measuring B-modes to r=0.001 will require exquisite control of polarized foregrounds.
- Current extrapolations with the simplest allowed foreground models predict that the galactic foreground will outshine the r=0.001 primordial by about x100 in all frequency channels, and emission properties are likely to be more complicated than many of the optimistic foreground forecasts suggest
- While forthcoming experiments could find hints of cosmological B modes, only a large mission with wide frequency coverage and high angular resolution can provide a reliable and convincing detection.

Reionizaton: beyond T approximation

- The so-called τ or z_{RE} "approximation" in CAMB code for CMB APS computation through numerical solution of Boltzmann equation "implies" a given simple analytical recipe for χ evolution
- More realistic models assume χ evolution based on
 - phenomenological approaches mimicking classes of (astro)physical processes
 - astrophysical models
 - detailed physical processes

Astrophysical reionization models

Inhomogeneous reionization: lognorm overdensity distribution. Sources of reionization:

- PopIII stars: Salpeter IMF but metal free (Schaerer 06)
- PopII stars: Salpeter IMF, Bruzual & Charlot
- Quasars: important for z<6

Chemical feedback governs the transition from PopIII to PopII stars $(Z_{crit}=10^{-5+/-1} Z_{sun})$: the two populations are coeval and PopIII stars can form also at relatively low-z.

Radiative feedback: temperature increase in ionized region → huge suppression of low-mass galaxies formation.

✓ Suppression model (Choudhury & Ferrara '06, MNRAS, 371, L55): radiative feedback is effective in DM haloes with circular velocity below a critical value v_{crit} ~ $(2k_BT/\mu m_p)^{1/2}$ where T is the average temperature of ionizing regions [~ 30 km/s for T=3x10⁴ K]

✓ Filtering model (Gnedin 2000 ApJ, 542, 535): the average baryonic mass within haloes in photoionized regions is a fraction of the universal value: where M_C is the mass of haloes that retain 50% of their gas mass.

C. Burigana, COrE/PRISM 2014, Paris 🕺

Phenomenological models

(Naselsky & Chiang 04, MNRAS 347, 795)

$$\varepsilon_{i}(z) = \varepsilon_{0} \exp\left[-\frac{(z - z_{\text{reion}}^{(1)})^{2}}{(\Delta z_{1})^{2}}\right] + \varepsilon_{1}(1 + z)^{-m}\Theta(z_{\text{reion}}^{(1)} - z)$$

here ε_0 , $z_{\text{reion}}^{(1)}$, and $\Delta z_1 \ll z_{\text{reion}}^{(1)}$ are free parameters describing the history of the first epoch of reionization which significantly decreases at $z > z_{\text{reion}}^{(1)}$; ε_1 , m, and (again) $z_{\text{reion}}^{(1)}$ are free parameters describing the history o.P. Naselsky and L.-Y. Chiang, 2004, MNRAS, 347, 795 reasing of $\varepsilon_i(z)$ with the time, being $\Theta(x)$ the step function.

$$\varepsilon_i(z) = \xi \exp\left[-\frac{(z - z_{\text{reion}})^2}{(\Delta z)^2}\right]$$

quite similar to that assumed to describe the first reionization epoch for late processes, can be exploited in this context [37]; again ξ , z_{reion} , and Δz are free parameters describing the history of this high redshift reionization scenario. Assuming $\Delta z \ll z_{reion}$ implies the choice of a peak-like model.

Extension to all modes

B-modes & reionization beyond simple tau-approximation

- Future of CMB polarization anisotropies:
 - towards B-modes & full exploitation of all modes
- Implementation of reionization models in CAMB code considering all modes & in particular B-modes (T. Trombetti & C.B., 2012, JMP, 3, 1918)
- Inclusion of
 - Phenomenological models (high/low z)
 - Astrophysical models
 - Mix of models

Typical cases \rightarrow

C. Burigana, COrE/PRISM 2014, Paris

EE & BB predictions

OFFEICA

C. Burigana, COrE/PRISM 2014, Paris (ÅSFBO

CMB spectral distortions

Current observations consistent with Blackbody & Standard Big-Bang Model ... but:

Very small distortions in continuum spectrum are

- ★ strongly predicted to be generated during *late epochs* (z < 10⁴), as Comptonization, free-free distortions associated to <u>reionization / structure</u> formation, hot galaxy clusters: <u>clearly detectable by PRISM</u> (≥100σ!)
- ★ or may be produced or have to be produced at earlier epochs (Bose-Einstein distortions, intermediate shapes, "exotic shapes") by "exotic" processes, as decays, annihilation, cooling/Bose condensation, damping of primordial perturbations probing the *power spectrum on very small scales* (*inflation*): detectable by PRISM → New physics!

→ "Direct" reconstruction of thermal history & thermodyn. processes up to z ≅10⁷

N.B.: fully analogy with CMB anisotropy before COBE/DMR:
 Standard model would be untenable if no distortion were detected

> H & He recombination lines from $z \approx 10^3$

> HI Balmer & Paschen- α lines detectable with **PRISM**

> additional anisotropic signal detectable with PRISM

Resonant scattering signals of metals during the dark ages

C. Burigana, COrE/PRISM 2014, Paris

Astrophysical models: CMB Comptonization distortions

Suppression Filtering

u 1.69×10^{-7} 9.65×10^{-8} u(z \ge 6) 7.98×10^{-8} 1.05×10^{-8}

(C.B. et al. 2008, MNRAS, 385, 404) Compatible with FIRAS limits → call for next generation CMB experiments (FIRAS II, DIMES, Moon Based ideas,

PIXIE – Kogut et al. 2011, JCAP, 7, 25, PRISM Coll. 2013, 2014)

Free-free distortions: effect of clumping

The homogeneous approximation is a rough lower limit approximation for free-free, because of the (Ω_b)² dependence implying an amplification factor, related to P(k) (and DM particle properties)

 ✓ Spectral shape sligthy steeper than λ²
 (because of Gaunt factor)
 ✓ Note the amplification by clumping, increasing for increasing k_{max}
 ✓ (Negative) FF by cooling largely subdominant Relative contribution peaks when the process starts and at low z

C. Burigana, COrE/PRISM 2014, Paris (ÅSFBO

Without any particular assumption about complex haloes physics, a robust lower limit to the global free-free averaged distortion signal expected from the diffuse ionized IGM in a given cosmological reionization scenario can be derived from fundamental arguments based only on density contrast evolution on cosmological models and well-known radiative emission mechanisms (T. Trombetti & C.B. 2014, MNRAS 437, 2507):

✓ Boltzmann codes for the matter variance evaluation;

 ✓ a dedicated code for the freefree distortion including the correct time and frequency dependence of Gaunt factor.

As shown in the figure, where signals from both free-free distortion and Comptonization decrement are included, the expected excess is at ~ mK level at decimeter wavelengths & a few % of Comptonization decrement expected in these models at $\lambda < 1$ cm.

Modest but not negligible impact for CMB space missions, main target for ground-based observations.

Summary of CMB spectral distortions in intensity

