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Scientific themes for future
microwaves to far-IR missions

dPrimordial CMB B-modes, high precision CMB T (absolute!) and E
(J CMIB spectral distortions
Jthermal history, energy exchanges between CMB and matter
reionisation, decaying dark-matter particles, small scale
primordial P(k)
 All crucial/unique for = early Universe & fundamental physics

1 3D cosmic structures:

1 A complete census of galaxy clusters (hot baryons and mass up to z>3)

* CMB lensing (projected mass)

* The CIB and dusty galaxies (up to z>6) — dust, AGNs and interplay, P(k) in shells
* 3D cosmic velocity flows
* All phases of the galactic interstellar medium:

* Dust (thermal, spinning, size and chemical composition)

* Cosmic rays (synchrotron components)

* @Gas (neutral and ionised), free-free, atoms and molecules, molecular clouds,

. Magneticﬁo\,\ﬁel.qv via polarisation of dust (and synchrotrczn)
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Observables vs physical mechanisms

 Thomson scattering

— Anisotropies, mainly
 EE, BB, TE modes

— Comptonization distortions

 Free-free

— Distortions (intermediate/long
wavelengths)

— Link with clumping
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5| Measuring B-modes

e Measuring B-modes to r=0.001
will require exquisite control of
polarized foregrounds. 1071

e Current extrapolations with the
simplest allowed foreground
models predict that the galactic 107"
foreground will outshine the
r=0.001 primordial by about
x100 in all frequency channels, & ;¢
and emission properties are -
likely to be more complicated
than many of the optimistic
foreground forecasts suggest

e While forthcoming experiments
could find hints of cosmological 1078k
B modes, only a large mission
with wide frequency coverage
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Reionizaton: beyond T approximation

» The so-called 1 or zg "approximation” in CAMB
code for CMB APS computation through numerical
solution of Boltzmann equation “implies” a given
simple analytical recipe for x evolution

* More realistic models assume ¥ evolution based on

— phenomenological approaches mimicking classes of
(astro)physical processes

— astrophysical models
— detailed physical processes
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Astrophysical reionization models
Inhomogeneous reionization: lognorm overdensity distribution.
Sources of reionization:

* Poplll stars: Salpeter IMF but metal free (Schaerer 06)
* Popll stars: Salpeter IMF, Bruzual & Charlot
« Quasars: important for z<6
Chemical feedback governs the transition from Poplll to
Popll stars (Z,,=10°"1 Z ). the two populations are
coeval and Poplll stars can form also at relatively low-z.
Radiative feedback: temperature increase in ionized
region - huge suppression of low-mass galaxies formation.

v'Suppression model (Choudhury & Ferrara ’06, MNRAS, 371, L55): radiative feedback
is effective in DM haloes with circular velocity below a critical value v~ (2kgT/um, )"
where T is the average temperature of ionizing regions [~ 30 km/s for T=3x10* K]

v'Filtering model (Gnedin 2000 ApJ, 542, 535): the average baryonic mass within
haloes in photoionized regions is M, Q,/Q

a fraction of the universal value: M [1+Q2"7-D)M./MT

where M. is the mass, of haloes that retain 50% of their gas mass.
,0' C. Burigana, COrE/PRISM 2014, Paris /ASF




(Naselsky & Chiang 04, MINRAS 347, 795)
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Extension to all modes
B-modes & reionization beyond simple tau-approximation

« Future of CMB polarization anisotropies:
— towards B-modes & full exploitation of all modes

« |Implementation of reionization models in CAMB code considering all
modes & in particular B-modes (T. Trombetti & C.B., 2012, JMP, 3, 1918)
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EE & BB predictions
Total BB & Lensing, r=0.01, fsky=0.8, bin 30%
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CMB spectral distortions

¢ Current observations consistent with Blackbody &
Standard Big-Bang Model ... but:

€ Very small distortions in continuum spectrum are

% strongly predicted to be generated during /ate epochs (z < 10%), as
Comptonization, free-free distortions associated to reionization / structure
formation, hot galaxy clusters: clearly detectable by PRISM (21000!)

s or may be produced or have to be produced at earlier epochs

(Bose-Einstein distortions, intermediate shapes, “exotic shapes”) by “exotic”
processes, as decays, annihilation, cooling/Bose condensation, damping of
primordial perturbations probing the power spectrum on very small scales
(inflation): detectable by PRISM - New physics!

€ - “Direct” reconstruction of thermal history & thermodyn. processes up to z =107

4 > N.B.: fully analogy with CMB anisotropy before COBE/DMR:
Standard model would be untenable if no distortion were detected

» H & He recombination lines from z = 103
» HI Balmer & Paschen-a lines detectable with PRISM
» additional anisotropic signal detectable with PRISM
> Resonant scattering signals of metals during the dark ages

K2
.
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1.69%1077 9.65%1078
u(z=6) 7.98%107 1.05%1078

(C.B. et al. 2008, MNRAS, 385, 404)

Compatible with FIRAS limits — call for next
generation CMB experiments (FIRAS II; DIMES,;
Moon Based ideas,




Free-free distortions: effect of clumping

4 The homogeneous approximation is a rough lower limit
approximation for free-free, because of the (Q,)? dependence implying

an amplification factor, related to P(k)
(and DM particle properties)
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s»Without any particular assumption
about complex haloes physics, a
robust lower limit to the global
averaged free-free  distortion
signal expected from the diffuse
ionized IGM in a given cosmological
reionization scenario can be derived
from fundamental arguments based
only on density contrast evolution on
cosmological models and well-known
radiative emission mechanisms
(T. Trombetti & C.B. 2014, MNRAS 437,
2507):

v Boltzmann codes for the

matter variance evaluation;

v a dedicated code for the free-

free distortion including the

correct time and frequency

dependence of Gaunt factor.
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As shown in the figure, where signals
from both free-free distortion and

Comptonization decrement are included,
the expected excess is at ~ mK level at
decimeter wavelengths & a few % of
Comptonization decrement expected in
these models at A < 1 cm.

Modest but not negligible impact for
CMB space missions, main target for
ground-based observations.
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Summary of CMB spectral distortions in intensity

Monopole distortion signals
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