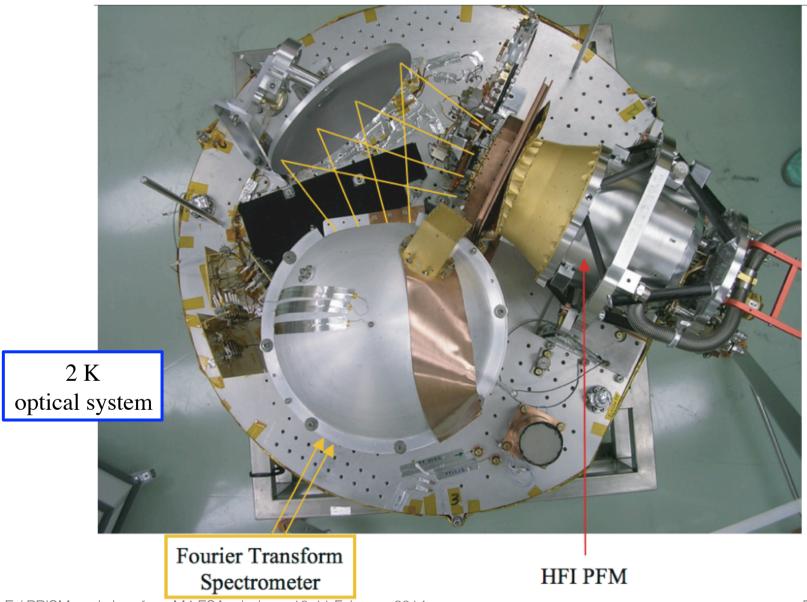


Ground/space calibration strategy:

from Planck/HFI to CoRE/PRISM

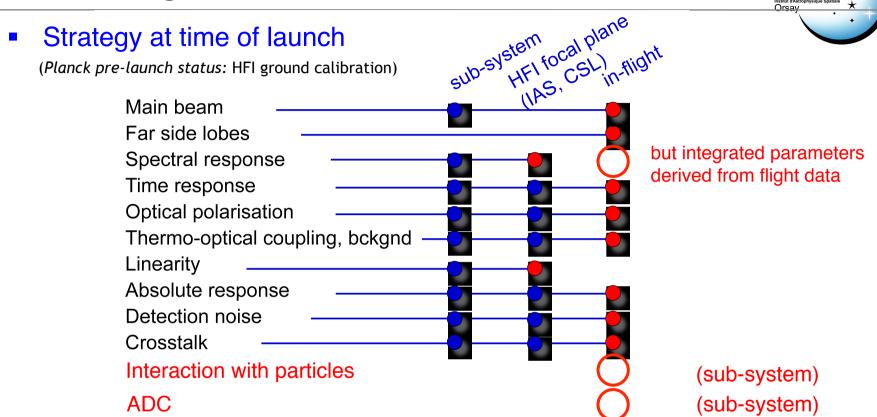
François Pajot

Planck/HFI ground calibration



Strategy defined 11 years before launch

(IAS, 17/11/1998)	Ground			In-flight
	Component	Sub-system	HFI test and	Planck
			calibrat° facility	payload
Beam on the sky		horn + telescope		$\sqrt{}$
Far side lobes		horn + telescope		$\sqrt{}$
Horn angular response	horns	horn + filters +	pupil plane	
	(cromaticity)	detector		
Spectral response (indiv., relative)	filters	11 11	$\sqrt{}$	
Time response	detectors	11 11		
Optical polarisation	polarizers	11 11	?	
Responsivity (electrical, optical)	detectors	" "		
Linearity		" "		
Sensitivity to T_0 (100 mK stage)	detectors	" "	2 nd priority	$\sqrt{}$
T _{Background} (optical load)	"	" "	2 nd priority	
T _{4 K} (4 K stage)			2 nd priority	
Absolute response		" "	1 st order	
Detectors noise	detectors	" "	V	
Crosstalk (electrical and optical)		partly filled	electrical	
` '		focal plane	optical	
Readout electronics	readout			
(capacitance stability, gains, noise)	electronics			
Compatibility: particles	detectors			
EMC			self compatibility	
LFI			one LFI channel	
vibrations		cryocoolers		


Planck/HFI ground calibration

Planck/HFI ground calibration

- In-flight determination for data processing
- Ground calibration is essential for
 - 1st order determination of instrument parameters
 - understanding the instrument and getting physical models of it
 - learning how to operate it and configure it for operations

CoRE/PRISM ground calibration strategy

- Similar sub-system ground based in-flight approach
- **Polarization**
- Spectral response
- Time response to lowest frequency (depends on scanning strategy)
- Do not forget particles interactions
 - representative subset of detection chain in front of accelerator
 - consolidate with modeling (GEANT 4)
- Do not forget ADCs
- Compatibility with cryochain
 - design
 - satellite level auto-compatibility tests

CoRE/PRISM ground calibration strategy

- Large focal plane means large optical setup
 - dealing with large number of pixels (statistics, pixel-per-pixel properties)
- Detectors (TES or KIDs?) will require specific calibration scheme for the readout
 - stability of gain
 - time response
- Spectrometry capabilities would require dedicated sources
 - frequency absolute calibration on ground (lines in the ISM)
- Optical coupling with telescope
 - what can be done on the ground but modeling?
- Systematics of unknown origin at the level of sensitivity required?

THE END