version 1.3, as of 20/01/2014

Interactions Fondamentales, Astroparticules et Cosmologie

Team Overview

C. Hugonie for the team

AERES committee visit January 20-22, 2014

Scientific quality and outputs
Academic reputation and appeal
Interaction with the social, economic and cultural environment
Organization and life
Involvement in training through research
Strategy and the five-year plan

Members of the team

As at 30/06/2013

Unit workforce	As at 30/06/13	As at 01/01/15
N1: Permanent professors	2	2
N2: Permanent researchers	3	3
N ₃ : Other permanent staff	0	0
N4: Other professors	1	0
N ₅ : Other researchers	2	4
N6: Other contractual staff	0	0
Doctoral students	1	2
Theses defended	3	3
Post-doc students	1	2
Number HDR taken	0	2
Supervisors with an HDR	2	3

(cf. back up slides for names and details)

- 1 UM2 retired in 2013 (will be "replaced" in 2014)
- 1 ATER left and 2 OCEvU LabEx post-doc started (09/2013)
- 1 OCEvU LabEx PhD will start (09/2014)
- 3 PhD students are (co-)supervised outside (Madagascar, Morocco)

Scientific production

Theory and phenomenology beyond the Standard Model

Supersymmetric extensions of the Standard Model: minimal (MSSM) and non-minimal (NMSSM). Development of computer codes for spectrum calculation (NMSSMTools). Phenomenology at accelerators (LHC, ILC) and complementarity through dark matter searches. GUT theories. Flavour physics. SUSY and non-SUSY models (Higgs triplet).

Astroparticle Physics

SUSY dark matter candidates (neutralinos, gravitinos, singlinos). WIMPs and FIMPs. Dark matter direct/indirect detection and sub-halos. Cosmic rays.

Cosmology

Primordial cosmic magnetic fields. Big Bang Nucleosynthesis and the ⁷Li problem. Semi-analytical methods in magneto-hydrodynamics. Cosmological simulations.

Quantum Chromo Dynamics (QCD)

Non perturbative QCD. Spectral sum rules. Computation of hadron spectrum and properties. Precision tests. Implications for LHCb. New states (quark molecules).

Quantum Field Theory

Formal aspects in Quantum Field Theory. Alternative quantification methods.

Scientific production

Collaborations

- Local: strong interactions with the EMA team and the L2C theory department
- Regional: link with Marseille (CPT, CPPM, LAM) strengthened by LabEx OCEvU
- National: regular collaborations with Annecy, Clermont-Ferrand, Orsay, Paris...
- International: Stanford, Oxford, Marrakech, Madrid, Sao Paulo, Madagascar...
- Invitations: K. Jedamzik spends 1 month/year in Stanford/Berkeley (1 publication)
 - S. Narison spends 3 month/year in Madagascar (2 publications)
 - U. Ellwanger (Orsay) comes 2 weeks/year (2 publications)...
- Co-supervised PhD: R. Albuquerque (Sao Paulo), J. Ramadan (Marrakech) come 3 m/y
- Seminar: special budget for longer stays (up to 1 week)

■ **Publications** (as of 30/06/2013)

- 35 publications in peer reviewed journals + 2 preprints (papers submitted in 2013)
- 7 conference proceedings (including QCD12 and HEPMad11)
- 1 research report (Les Houches 2011) + 4 invited conferences
- Total: 45 publications for 5 permanent members + 2 emeritus over 2,5 years
- Topcite: Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale
 U. Ellwanger, C. Hugonie, Adv. High Energy Phys. 2012 625389, 74 citations (15/01/2014)

Visibility and attractiveness

National networks

- GDR Terascale (1996-2017)
- PEPS IFAC-CPPM (2010-2011)
- LabEx OCEvU (2012-2020)
- Théorie-LHC-France (IN2P3)

International networks

- LIA ILCP (France-Maroc, 2009-2013)
- LIATCAP (France-Russie, 2012-)
- FAPESP (Sao Paulo, 2010-2012)
- PICS (Cracow, 2010-2012)

ANRJ

Test et Analyse de la Physique Au-delà du Modèle Standard (2009-2013)

Recruitments

- 1 ATER (2012-2013): A. Villanova del Moral
- 2 OCEvU LabEx post-docs started in 09/13: C. Torero (CPT), S. Diglio (CPPM)
- 1 CR1 CNRS (commission o2) in 2011: J. Lavalle (+25% permanent since o1/11)
- 1 MCF section 29 in 2014 (replacement): >50 potential candidates
- Many CNRS candidates are interested by IFAC (3 out of 10 for CR1/02 in 2013)

Visibility and attractiveness

Expertise

- LabEx OCEvU: 2 elected members in the Scientific Council
- Comité de Financement de la Théorie (IN2P3): 1 nominated member
- Comité ANR SIMI-5: 1 nominated member
- All members of the team are referees in PhD committees and rank A journals

International Conferences

- OCD (Montpellier, 2012 & 2014): 130 participants
- HEPMad (Madagascar, 2011 & 2013): 60 participants
- Lithium in the Cosmos (Paris, 2012): 70 participants
- Identification of Dark Matter (Chicago, 2012): 180 participants

National meetings and workshops

- Rencontres de physique des particules (Montpellier, 2012): 55 participants
- GDR Terascale general meeting (Montpellier, 2013): 53 participants
- Cosmic ray physics and dark matter searches (Montpellier, 2012): 20 participants
- News from the Dark (Montpellier, 2013): 25 participants

Outreach activities

- **Popular science:** internships for pupils, lectures in high schools, general public conferences, interviews in the local press/radio...
- Agora des Savoirs: Le boson de Higgs, C. Hugonie (2012)
- Planétarium de Montpellier: L'énigme de la matière noire, J. Lavalle (2013)
- Pour la Science (2012): Les trous noirs de masse intermédiaire, J. Lavalle
- Fête de la Science (annual): De l'infiniment petit à l'infiniment grand (2013)

Life of the team

Structure

- Half of the former IFAC-LPTA team stayed in the LUPM, half moved to the L2C theory department
- At present: 4 permanent staff, 1 long term visitor, 2 emeritus, and 1 PhD (+2 shared post-docs)
- 1 person in charge, centralising administrative/scientific issues (C. Hugonie)

Representation in steering committees

- Comité de direction: regular meetings to discuss budget, projects, job profiles, etc...
- Conseil de laboratoire: 2 members (C. Hugonie, K. Jedamzik), 4 meetings/year
- Conseil Scientifique: 1 member (J. Lavalle), 2 meetings in 2013

Scientific animation

- Common seminars with L2C: ~30 seminars/year in 2011-2013, 2/week scheduled for early 2014
- Weekly journal club (common with L2C): recent papers, new ideas, informal talks with guests
- Journées du labo: future projects, job profiles, share with other teams (+invited L2C members)
- Premises: Offices shared with the L2C theory department (bat. 13, 1st floor)
- Access to shared resources: Computing grid (MSFG)
- Web page: 1 person in charge for the team (J. Lavalle)

Training through research

Master Cosmos Champs et Particules (CCP)

- Average per year: 10 students including 1 Erasmus, leading to 7 PhDs
- Responsibility of the Master + training courses (M1 and M2)
 - + Physique des Hautes Energies (M1 and M2): C. Hugonie
- Physique Quantique Avancée (M1): M. Capdequi-Peyranère
- Matière Noire (M2): J. Lavalle

Summer schools

- African School of Physics: S. Narison (international committee)
- École de Physique des Astroparticules: J. Lavalle (scientific committee)
- École de GIF de Physique: C. Hugonie (organisation committee), J. Lavalle (2013)

Number of PhD students: 7

- 4 (co-)supervised in LUPM of which 3 were defended + 3 (co-)supervised outside
- shared OCEvU LabEx PhD will start in o9/2014 (with CPPM)
- Dedicated budget for summer schools and national/international conferences
- Participation to outreach activities of the team (eg Fête de la Science)

Scientific context

A major discovery was announced on the 04/07/2012

Results presented in Moriond (03/2013)

- A new boson with mass ~ 125.6 GeV has been observed!
 - Results confirmed by Tevatron (competitive on bb, excess in γγ)
 - ➤ Is it the Higgs boson predicted by the Standard Model?
 - ✓ Check its spin/parity (o+), no surprise is expected
 - ✓ Check its production/decay modes (its couplings)
 - ✓ Check the Higgs mechanism (its self coupling λ)

Beyond the Standard Model

- (Almost) everything seems to indicate that the SM is correct. It is a renormalisable theory. Is it the end of the story?
- \triangleright Or is there New Physics at a scale Λ_{NP} ?
 - \square Triviality ($\lambda < +\infty$): no information on Λ_{NP} ($>\Lambda_{Planck}$)
 - \square Stability (λ >0): our (electroweak) vacuum is meta-stable...
 - lacksquare Quantum gravity: new paradigm beyond $\Lambda_{\mathrm{Planck}}$
 - ☑ Baryogenesis: electroweak phase transition not strong enough
 - ☑ Dark matter: no candidate in the Standard Model
 - ☑ Flavours: neutrino masses, families, mass hierarchy?
 - ☑ GUT theories: imperfect unification, proton decay too fast
- \succ New Physics \Longrightarrow Hierarchy problem: $\delta
 m M_h^2 \sim \Lambda_{NP}^2$

Supersymmetry (SUSY)

- New symmetry between bosons and fermions
- Minimal SUSY extension of the Standard Model (MSSM):
 - SM fermions (quarks , leptons) ⇔ sfermions (spin o)
 - □ Gauge and Higgs bosons ⇔ gauginos, higgsinos (spin ½)
 - 2 Higgs doublets ⇒ 2 scalars, 1 pseudo-scalar, 1 charged Higgs
- $oxed{\square}$ Technical solution to the hierarchy pb: $\delta \mathbf{M}_{\mathrm{h}}^2 \sim \mathbf{m}_{\mathrm{B}}^2 \mathbf{m}_{\mathrm{F}}^2$
- ☑ Coherent GUT theories ($\Lambda_{GUT} \sim 10^{16} \, \text{GeV}$, $\tau_{proton} > 10^{32} \, \text{years}$)
- ☑ Possible baryogenesis (1st order phase transition)
- ☑ LSP (Lightest SUSY particle) = dark matter candidate (WIMP)
- Design and evolution of the code NMSSMTools: properties of (s)particles in the Next-to-Minimal SUSY model (C. Hugonie)
- ➤ Collaboration with ATLAS-CPPM: 1 post-doc + 1 PhD LabEx OCEvU

Dark matter: direct detection

Study of astrophysical uncertainties: halo shape, earth velocity resp. to the halo, WIMPs escape velocity + complementarity with indirect detection (J. Lavalle, S. Magni)

⇒ Development of a code to reproduce experimental results as a function of strophysical hypothesis and make prediction for the next generation detectors

Collaboration with L. Lellouch (CPT, Marseille): study of nuclear uncertainties for the computation of σ_p (Lattice QCD) \Rightarrow post-doc LabEx OCEvU (C. Torrero)

Dark matter: indirect detection

- WIMPs annihilation in the galaxy: production of photons, electrons, positrons, (anti)protons...
- DM SM
- Local expertise on γ ray detection (HESS, Fermi, CTA)
- Expertise on anti-matter cosmic rays + sub-halos: J. Lavalle
- Collaboration with E. Nezri (LAM, Marseille) and R. Teyssier (CEA Saclay): cosmological simulations including cosmic rays and multi-wavelength associated signals ⇒ study of the WIMPs signal over astrophysical noise

Cosmic rays

➤ Modelling of local e⁺e⁻ sources:

⇒ High energy positron excess
Study of the coupled evolution of cosmic rays
magnetic fields (J. Lavalle + EMA)

Cosmic ray propagation (J. Lavalle):

Magnetic fields (+K. Jedamzik, A. Marcowith)
Diffuse emission (+HESS, Fermi, CTA)
Study of anisotropies (+P. Salati)
Constraints from AMS data (+D. Maurin)

MHD semi-analytical methods

- Semi-analytical methods in Magneto-Hydro Dynamics: developed by K. Jedamzik so as to predict the evolution of astrophysical and cosmological fluids, with applications to cosmic rays/magnetic fields (interface with EMA/AS)
- Precise predictions over large dynamical ranges:

Non-perturbative QCD

- QCD sum rules methods: invented in '79 by M. Shifman, A. Vainshtein and V. Zakharov, developed by S. Narison
- ► Link quantities in perturbative and non-perturbative QCD (difficult to compute) with experimentally measured quantities: $e^+e^- \rightarrow hadrons$ cross section, τ decay width...
- Allows to compute perturbative parameters (α_S, m_S, m_C, m_b), non-perturbative quantities (quark or gluon condensates), light hadrons properties (scalar meson masses), heavy hadrons properties (B and D mesons decay constants) and new states (quark molecules)
- Comparison with lattice QCD (+ L. Lellouch, CPT-Marseille)
- Comparison with AdS/CFT (+ F. Jugeau, Rio de Janeiro)
- Collaboration with experimentalists (LHCb)

S.W.O.T.

Strengths and weaknesses

- Strong tradition in particle physics phenomenology covering hadron physics,
 the Higgs sector and Beyond the Standard Model physics
- Design and evolution of public tools to explore the phase space of SUSY
- A world-class expertise on the study of the primordial universe
- Opening towards astroparticle physics, through the study of dark matter,
 leading to fruitful interactions with the members of the EMA team
- Small number of (non-)permanent staff

Opportunities and threats

- Recruitment of a Maître de Conférence in 2014 will strengthen the group
- Various sources of funding (LabEx OCEvU, IN2P3 theory projects, LIA ILCP)
- Strong links with experimentalists (GDR Terascale and LabEx OCEvU)
- Close relations with the theory department of L2C

Back up

Members of the team (details)

Permanent staff: 5

- Julien Lavalle: CR1 (HDR in preparation)
- Karsten Jedamzik: CR1
- Stephan Narison: DR1 HDR
- Cyril Hugonie: MCF (HDR in preparation)
- Michel Capdequi-Peyranère: MCF HDR (retired in 09/2013)

Post-docs: 3

- A. Villanova del Moral: post-doc IN2P3/ATER (2009-2013)
- 2 OCEvU LabEx shared post-docs started in 09/13: C. Torero (CPT), S. Diglio (CPPM)

PhD students: 7

- B. Mutet: co-supervised by P. Grangé, J. F. Mathiot (LPC Clermont), defended 01/2011
- G. Espitalier-Noël: co-supervised by C. Hugonie, J.L. Kneur (L2C), defended 11/2012
- R. Albuquerque: co-supervised by S. Narison, M. Nielsen (Sao Paulo), defended 02/2013
- S. Magni: supervised by J. Lavalle, since 2012
- J. Ramadan: co-supervised by M. Capdequi-Peyranère, M. Chabab (Marrakech), since 2009
- A. Rabemananjara, F. Fanomezana (Madagascar): supervised by S. Narison, since 2010

Associates: 2

- Pierre Grangé: emeritus
- Fernand Renard: emeritus

Higgs decay channels

Observed in various channels:
$$\mu_i = \frac{[\sum_j \sigma_{j \to h} \times \text{Br}(h \to i)]_{observed}}{[\sum_j \sigma_{j \to h} \times \text{Br}(h \to i)]_{SM}}$$

But: new physics can also modify the Higgs production modes

Higgs production modes

• The most useful results from X ATLAS and CMS

- Combination by B.
 Dumont (ex Master CCP),
 S. Kraml, G. Bélanger,
 U. Ellwanger, J. Gunion
- **In progress:** fit of the (N)MSSM parameters

Minimal SUSY model (MSSM)

- Historical topic, initiated by F. Renard
 - Determination of $tan\beta$ (= v_u/v_d) through $A_{LR}(t)$ in $bg \rightarrow tH^-$ at the LHC
 - Determination of R_{bb} through $A_{LR}(Z)$ in $bg \rightarrow bZ$ at the LHC
 - Supersimplicity: SUSY confers a remarkable helicity conservation property to electroweak diffusion amplitudes at high energy. Use of $gg \rightarrow VV'$ or $\chi\chi'$ (LHC) and $e^+e^- \rightarrow tt$ or W^+W^- (ILC) as a test of SUSY/SM.
- SuSpect public code: widely used by the community
 - Computes (s)particles masses and couplings starting from SUSY
 breaking parameters at the GUT scale (Renormalisation Group Eqs.)
 - Developed in Montpellier by A. Djouadi, J.L. Kneur, G. Moultaka ('96)
 - Translated to C++ in collaboration with M. Ughetto (PhD L2C/CPPM)
 and D. Zerwas (LAL): automated calculations, flexibility (new models)

Next-to-minimal model (NMSSM)

- Extended Higgs sector: 2 doublets H_u , H_d + 1 singlet S
- Solution to the MSSM μ problem: $\mu \sim \Lambda_{weak} \sim \Lambda_{Susy}$?
 - $\ ^{\square }$ $\ \mu =0$ is experimentally excluded, $\mu =\Lambda _{planck}\Longrightarrow$ hierarchy problem
 - $\label{eq:hamiltonian} \quad \text{Replacing } \mu H_u H_d \text{ by } \lambda S H_u H_d \text{: after EW symmetry breaking } \mu_{eff} = \lambda \langle S \rangle \sim \Lambda_{weak}$
- Richer phenomenology (+2 Higgs states, +1 singlino)
 - singlino LSP \Rightarrow additional cascade in sparticle productions
 - Very light (singlet) Higgs not excluded by LEP (difficult to see at the LHC)
 - Mass of lightest Higgs doublet higher than in the MSSM ($< M_Z$ at tree level)
- Public code NMSSMTools: C. Hugonie, U. Ellwanger (LPT-Orsay)
 - Study of the impact of the non-observation of sparticle at the LHC
 (C. Hugonie, G. Espitalier-Noël): less fine-tuning than in the MSSM
 - 125 GeV Higgs state with an enhanced γγ rate can be obtained naturally together with a possible lighter Higgs state (C. Hugonie, U. Ellwanger)
 - Will it be possible to detect this new Higgs boson at the LHC new run?

Composite models

- To protect the Higgs mass, one can suppose it is not a fundamental state but a **composite state** ($h \sim \psi \overline{\psi}$)
- Idea coming from QCD where light scalar states exists with no hierarchy problem: $m_{\pi} < \Lambda_{QCD} << \Lambda_{Planck} \Leftrightarrow$ appear for $\alpha_S >> 1$ QCD + (u,d): accidental global symmetry $SU(2)_L \times SU(2)_R \to SU(2)_V$ broken by $\langle q\overline{q} \rangle \neq 0$ \Rightarrow 3 Goldstone bosons (π) but $m_{\pi} \sim m_q$ because m_q breaks explicitly $SU(2)_L \times SU(2)_R$
- One assumes that the Higgs is a pseudo-Goldstone of a global symmetry broken by a new strong interaction condensate
 - Minimal model: $SO(5) \rightarrow SO(4)$, 4 Goldstone bosons = 1 Higgs doublet h
 - Dark matter: $SO(6) \rightarrow SO(5)$, 5 Goldstone bosons = 1 doublet h + 1 singlet η
- M. Frigerio, J.L. Kneur, N. Bizot (PhD LabEx OCEvU L2C/CPT)
 - + collaboration with ATLAS-CPPM, LabEx OCEvU post-doc (S. Diglio)

Neutrino masses

- Daya Bay (2012) : $\theta_{13} \neq 0$ ⇒ exp. fits: $\theta_{23} \neq 45^{\circ}$ Predictions: $\theta_{23} = 45^{\circ}$
- Models to reproduce this with Q₆, A₄ symmetries
 (M. Frigerio, A. Villanova)

Higgs triplet

Appears in neutrino mass models (type II see-saw):

$$\mathcal{L}_{Yukawa} \supset L^{T}C \otimes i\sigma^{2}\Delta L \text{ where } Y_{\Delta} = 2 \Rightarrow \Delta = \begin{bmatrix} \delta^{+} & \delta^{++} \\ \delta^{0} & -\delta^{+} \end{bmatrix} + \text{Higgs doublet } H = \begin{bmatrix} \phi^{+} \\ \phi^{0} \end{bmatrix}$$

■ The model contains 8 parameters, 1 being fixed par M_Z (7 free parameters):

$$V(H,\Delta) = -m_H^2 H^{\dagger} H + M_{\Delta}^2 Tr(\Delta^{\dagger} \Delta) + \left[\mu(H^T i \sigma^2 \Delta^{\dagger} H) + \text{h.c.}\right] + \frac{\lambda}{4} (H^{\dagger} H)^2$$
$$+ \lambda_1 (H^{\dagger} H) Tr(\Delta^{\dagger} \Delta) + \lambda_2 (Tr \Delta^{\dagger} \Delta)^2 + \lambda_3 Tr(\Delta^{\dagger} \Delta)^2 + \lambda_4 H^{\dagger} \Delta \Delta^{\dagger} H$$

+ 7 physical states (h, H, A, H $^{\pm}$, H $^{\pm\pm}$) contributing to h $\rightarrow \gamma \gamma$:

(M. Capdequi-Peyranère, J. Ramadan)

FIMPs: freeze-in

- Freeze-in: new mechanism to produce dark matter implying FIMPs = Feebly Interacting Massive Particles, proposed by K. Jedamzik, L. Hall (Berkeley), S. West, J. March-Russel (Oxford)
- > In primordial universe: FIMPs out of thermal equilibrium, but residually produced

$$\frac{dY_{\chi}}{dx} \propto -\langle \sigma v \rangle \left\{ Y_{\chi}^{2} - Y_{\text{eq}}^{2} \right\}$$

- ➤ The stronger the interactions, the larger the FIMPs relic density (as opposed to freeze-out)
- Various scenarios: dark matter is either made of FIMPs or comes from its decays
 - ➤ Metastable charged particles at LHC?
 - > FIMP decays during BBN (7Li solution)?
 - > Enhanced indirect production?
- ➤ The NMSSM singlino could be FIMP? (C. Hugonie, K. Jedamzik, S. West)

Primordial magnetic fields

Assuming magnetic fields on 1 kpc and of 10⁻¹¹ G at recombination time

- Density fluctuations (up to ~1) for baryons/electrons are generated
- > Effects on recombination time and CMBR, measurable by Planck
- Actual limits on such fields ~ 10⁻⁹ G for large scale fields (~ 10 Mpc)

