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Outline

@ Review: Cauchy and Littlewood identities, connection with plane partitions

© More advanced examples: t-generalizations, and symplectic characters

e Refined Cauchy and Littlewood identities, and refined plane partitions

@ Partition functions in the six-vertex model, connection with ASM symmetry classes

Michael Wheeler Refined Cauchy and Littlewood identities



Schur polynomials and SSYT

@ The Schur polynomials sy(x1,...,xn) are the characters of irreducible
representations of GL(n). They are given by the Weyl formula:

Aj—itn

det <xl )
1<i,j<n

sa(z1y...,xn) =
o H1<1:<j<n(mi*90j)

@ A semi-standard Young tableau of shape X is an assignment of one symbol
{1,...,n} to each box of the Young diagram X, such that

@ The symbols have the ordering 1 < - -+ < n.
@ The entries in X increase weakly along each row and strictly down each column.

o The Schur polynomial sy(z1,...,xn) is also given by a weighted sum over
semi-standard Young tableaux T" of shape A:

sa(@1,..,zn) =Y [[ 2

T k=1
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SSYT and sequences of interlacing partitions

o Two partitions A and u interlace, written A > p, if
Ai Z i 2 Aiga
across all parts of the partitions. It is the same as saying A\/u is a horizontal strip.
@ One can interpret a SSYT as a sequence of interlacing partitions:

MO L AM <A =y

T={0=
o The correspondence works by “peeling away” partition A(F) from T, for all k:
2]2]4] [ ]
2123
3|3]4 [ ]
4] L]

A2 < AB) < A4
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Review

Plane partitions
@ Plane partitions can be viewed as an increasing then decreasing sequence of
interlacing partitions. They are equivalent to conjoined SSYT.
o We define the set

Tm,n = {@ = )\(O) =< )\(1) <= A(m) = u(”) - ,LL(I) - H(O) = @}
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Cauchy identity and plane partitions

@ The Cauchy identity for Schur polynomials,

m n

st(xl,...,:rm)sx(yl,...,yn) = H H
A

1=1j5=1 — ZiYj

can thus be viewed as a generating series of plane partitions:

> II PARI T PN ”\II )|t IIII

TETm,n i=1 i1=1j=1 — TiYj

o Taking the g-specialization z; = ¢™~**t1/2 and y; = ¢"~711/2, we recover
volume-weighted plane partitions:

m n m n

> W—animﬁﬁﬁ Il = prr

TETm,n i=15=1 i=1j5=1
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Review

Symmetric plane partitions

@ A symmetric plane partition is determined by an increasing sequence of interlacing
partitions. (The decreasing part is obtained from the symmetry.)

@ They are in one-to-one correspondence with SSYT.
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Littlewood identities and symmetric plane partitions

@ The three (simplest) Littlewood identities for Schur polynomials

Zsk(xh---ﬂﬁn): H 1, ) 1_.[ :
8 ‘

1 —
1<i<j<n

1 n 1
> osa(@n,m) = ] — H1 2

1—z;x; —x
A even 1<i<j<n v =1 i
1
E sa(z1,...,zn) = | | T
A’ even 1<i<jsn L)

can each be viewed as generating series for symmetric plane partitions, with a
(possible) constraint on the partition forming the main diagonal.
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More advanced examples

Hall-Littlewood polynomials

o Hall-Littlewood polynomials are t-generalizations of Schur polynomials. They can
be defined as a sum over the symmetric group:

1 n by $,’—t,7,‘#
Py(z1,...,xn;t) = o x’ " LA
o = o S ([ [T 222

c€S, \i=l  1<i<j<n

o Alternatively, the Hall-Littlewood polynomial Py(z1,...,Zn;t) is given by a
weighted sum over semi-standard Young tableaux T" of shape A:

Py(z1,...,xn;t) = Z H (mk#(k)’QA(A:)/A(A: 1) (0)
T k=1

where the function 1, /,(t) is given by

w)\/u(t) = H (1 - t’"’lUL))

i>1
m;(p)=m;(N\)+1
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More advanced examples

Path-weighted plane partitions

@ As Vuleti¢ discovered, the effect of the t-weighting in tableaux has a nice
combinatorial interpretation on plane partitions.

@ The refinement is that all paths at level k receive a weight of 1 — tF.

o Example of a plane partition with weight (1 —2)%(1 — 3)2 shown below:

. Level-3
B L.
|:| Level-1
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More advanced examples

Hall-Littlewood Cauchy identity and path-weighted plane partitions

@ The Cauchy identity for Hall-Littlewood polynomials,
A
is thus a generating series of (path-weighted) plane partitions:

S JJa-6)" <ﬂ>H |A<>\—N’—1>\H e HH 1 —twiy;

TETm n i1 i=1j=1 - Ti¥j

n

m;(N) m tra
H (1= t)Pr(z1, -, @m; ) PrA(Y1, - -, Yni L) =Hnﬂ

1 j= iS1jo1 1Ty

';:13

=

k3

@ Taking the same g-specialization as earlier, we obtain

Z m 1 — tgiti—
Z H p (7—) ‘7‘" H H 1— ;’L+]—1

TETm,n i1 1=1j5=1
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More advanced examples

Littlewood identities for Hall-Littlewood polynomials

@ The t-analogues of the previously stated Littlewood identities are

ZP)\(Il,...,Z’n;t): H 171‘/331'33]' ﬁ 1
X .

1<i<j<n V—aimy 21—
1—tx;x; n 1
. — J
> Pa(zr,..zat) = ] [ 5
- 1—CE¢$]' " 1 — x*
A even 1<i<j<n =1 4

co m;(X)

Z H H (l—tjfl)PA(xl,...,a:n;t): H m

1 — . .
M even i=1j even 1<i<ji<n iy

@ These can be regarded as generating series for path-weighted symmetric plane
partitions.

@ Warning! Paths which intersect the main diagonal might not have a t-weight!
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t-weighting of symmetric plane partitions




More advanced examples

Symplectic Schur polynomials

@ The symplectic Schur polynomials spy(z1,Z1,...,Zn,Tn) are the characters of
irreducible representations of Sp(2n). In this case, the Weyl formula gives

7

; Aj—j+n+1 /_Aj—j+n+1
det (1: -, )

SpA(Tl x1 Tn, T ) = ISi,jsn

L1, yeresy Ly, Tn ) = I — —
i=1(@i = Z) [Ticicjcn (@i — 25) (1 — 2525)

e A symplectic tableau of shape ) is an assignment of one symbol {1,1,...,n,n} to

each box of the Young diagram X, such that

@ The symbols have the ordering 1 < 1 < --- < n < 7.
@ The entries in \ increase weakly along each row and strictly down each column.
© All entries in row k of \ are at least k.

@ The symplectic Schur polynomial spx(z1,%1,...,Zn,Zn) is given by a weighted
sum over symplectic tableaux T of shape A:

n

SpA(T1,T1, ..., Tn, Tn) = Z H wk#(k)_#(k)
T k=1
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More advanced examples

Symplectic tableaux as restricted interlacing sequences

@ We can interpret a symplectic tableau T as a sequence of interlacing partitions,
subject to an extra constraint:

T={0=2" <2® X0 <X <300 = x| 1D <y

1[1]1]2]3]

21213

3134
4]

@ The symplectic Schur polynomial can now be expressed as

n . n .
_ _ (A 261 [PXC2 N
spA(@1, 31, 20, ) =y [ [ 2 []=
T oi=1 j=1

n O NOINCES
=> [I=
k2
T oi=1
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More advanced examples

A restricted class of plane partitions
@ We consider the class of plane partitions formed by a conjoined SSYT and
symplectic tableau.
o We define the set

F'm,Zn = {Q) = )\(0) =< )\(1) <= )\('m) = ﬂ(n) — u(”) P - ﬂ(l) — /»‘L(l) — ﬂ((]) = @}
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More advanced examples

Symplectic Cauchy identity and associated plane partitions

o The Cauchy identity for symplectic Schur polynomials,

H1<i<j<m(1 — %ix;5)

SA(xlv---7xm)5pk(y171717---7yn7gn): —
2 g T (U= @ay) (1 — 35)

can now be regarded as a generating series for the plane partitions defined:

3 H \A“\—N‘*“\H 20D )= |- |aG =D

TEM 20 1=1
ngi<j§m(1 - 131131)
L H?:1(1 —z;y5)(1 — 2;75)

@ One can experiment with the parameters to find a “good” g-specialization. We
choose x; = ¢"™~*t3/2 and Yj = qt/2, giving

(1= gt

S gimelgingi-ingl = Miciciom
[T (1 =g (1 =g th)m

TETm,2n
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Refined Cauchy and Littlewood identities

Example 1(a): Refined Cauchy identity for Schur polynomials

n
ST = 2 ) sx (@, @n)sa - -, )

A i=1

1 (1—1¢)
= de
A(Z)n A(Y)n ’ { (= tl’iyj)(l - l'iyj) }1<i’j<n

Proof.

Expand the entries of the determinant as formal power series, and use Cauchy—Binet:

det (=t = det i(l — thtl)ghyk
(1 - tziyj)(l - -’Eiyj) €h i< e
SLISN k=0 1<i,j<n
n
= il = @l dt{ .f} dt{ }
2 11 ) det L I

k1>:->kn20 =1

The proof follows after the change of indices k; = A\; — i + n.

Michael Wheeler Refined Cauchy and Littlewood identities



Refined Cauchy and Littlewood identities

Example 1(b): Refined Cauchy identity for Hall-Littlewood polynomials

Theorem (Kirillov—Noumi, Warnaar)

m; ()

ZH H (1 —tj)PA(zl,...,acn;t)PA(yl,...,yn;t)
A

i=0 j=1
17,2, (1 — taiy;) (1—1)
A(I)HA(y)n det { (1 - tziyj)(l - ifiyj) }1<z j<n

The key idea is to act on the Hall-Littlewood Cauchy identity with a generating series of
Macdonald'’s difference operators. The left hand side follows immediately. The right hand
side follows after acting on the Cauchy kernel, and performing some manipulation. O
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partitions?

the level of plane

ned Cauchy identity for Hall-Littlewood polynomials

tion: What does the refinement do at

Example 1(b): Refi



ned Cauchy identity for Hall-Littlewood polynomials
o-height entries are treated like the rest!

. The zer

o Answer
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Refined Cauchy and Littlewood identities

Example 2(a): Refined Littlewood identity for Schur polynomials

Theorem (DB,MW)
Z H (1 — M2 gy (21, ..., @an)

A’ even i even
. 1 (l—t)(ac,-—:z:j)
- I (zi — wj)Pf { (

1<i<j<on ¥ 1~ twiw;)(1 — ziz;) }1<i<j<2n

Proof.

Expand the entries of the Pfaffian and use a Pfaffian analogue of Cauchy—Binet:

PE{ hicicom =PEQ D S pp1(1 —t"T)(alal — afah)

Osk<i 1<i<j<2n

s;—1
= > refeas -0} defad T}
1<51< - <s2n 1Si<is2n 1<4,5<2n

The Pfaffian in the sum factorizes, to produce the correct (blue) factor and the
restriction on the summation. O
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Refined Cauchy and Littlewood identities

Example 2(b): Refined Littlewood identity for Hall-Littlewood polynomials

Conjecture (DB,MW)

co m;(A)

Z H H 1—t7 1PA(ac1,.. )

A even 1=0j even

_ H (1_txix‘7)Pf{ (1 —t)(zs — ;)
(

1-— txixj)(l = xixj) }1$i<j§2n

1<i<j<2n (zi — ;)
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partitions, y simple refinement!

Example 2(b): Refined Littlewood identity for Hall-Littlewood polynomials
@ At the level of plane




partitions, y simple refinement!

Example 2(b): Refined Littlewood identity for Hall-Littlewood polynomials
@ At the level of plane




Refined Cauchy and Littlewood identities

Example 3(a): Refined Cauchy identity for symplectic Schur polynomials

Theorem (DB,MW)

n
ST =i sy (@1, 20)sPA@L T, - - Yno Bn) =
X i=1

T (1 —tx?) det{ (1—1) }
A@)n AY)n [T (1 = 7:95) (1 = tasy;) (1 — tws@;) (1 — way; )1 — 2385) ) 14 i<

Proof.

Similar to the ordinary Schur case:

n oo
H(l - tx%)(yi — ;) det {--- }1<i,g<n = det {Z(l - thrl)mi‘c (y;ﬁl - yéﬁl)}
1<e

i=1 k=0 <iyj<n

n
_ k41 kj ky+1l _ —ki+1
= Z H(l t ) det {xl }1<i,j<n det {y]. 7;

Frose
k1> >kp>0 i=1 ENIVAS L

The proof follows after the change of indices k; = A\; — i + n.
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Refined Cauchy and Littlewood identities

Example 3(b): Identity involving BC;, Hall-Littlewood functions

@ Macdonald extended his theory of symmetric functions to other root systems. We
will use the type BC), Hall-Littlewood functions:

_ _ 1 noy (yi —ty;) (A — t5:9;)
KA1, 015 Yo Gnst) = —— > w Hm II

ua(t) 45 palet i) 1cicien Wi = ¥5) (1= Tig;)

where the sum is taken over the hyperoctahedral group, w € S, % 7.

Conjecture (DB,MW)

oo m;(X) }
STIT IT @ =#)Pa@r, - s ) KA1, 91, - - Yns Ui t) =
X i=0 j=1
[T5 21 (1 — taiy;) (1 — t75)
[icicjcn @i —2) (Wi — y;) (A — tziz;) (1 — 5:95)
1—t
X det{ (_ ) — }
(1 =ty (1 — i) (1 — 2y ) (L= 2iY5) J 1< j<in
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Six-vertex model partition functions

The six-vertex model

@ The vertices of the six-vertex model are

- x - x -z
y v v
T T T
at(z,y) by (z,y) ct(z,y)
— T — T — T
y y y
T T T
a—(z,y) b_(z,y) c—(z,y)
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Six-vertex model partition functions

The six-vertex model

@ The Boltzmann weights are given by

ay(z,y) = 1= a/y a_(z,y) = 1—z/y
by (z,y) =1 b_(z,y) =t
B A R e

@ The parameter t from Hall-Littlewood is now the crossing parameter of the model.

@ The Boltzmann weights obey the Yang—Baxter equations (the Z/{q(;l\g) solution):

\
£y

S
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Six-vertex model partition functions

Boundary vertices

@ In addition to the bulk vertices, we introduce U-turn vertices

-z — T
— T — T
1/(1 —22) 1/(1 —2?)
which depend on a single spectral parameter and are spin-conserving, and corner
vertices
T T
T T
— T — T
1 1

which do not depend on a spectral parameter and behave like sources/sinks.
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Six-vertex model partition functions

Boundary vertices

@ The U-turn vertices satisfy Sklyanin’s reflection equation:

8 —
-

8
-
- 8
— <

@ The corner vertices satisfy their own variant of the reflection equation:

T
1] z

< =
8
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Six-vertex model partition functions

Domain wall boundary conditions

@ The six-vertex model on a lattice with domain wall boundary conditions:

Y1 Y2 Y3 Y4 Ys Ye
T T T

@ This partition function is of fundamental importance in periodic quantum spin
chains based on Y(sl2) and Uy (sl2).

o Configurations on this lattice are in one-to-one correspondence with alternating sign
matrices.
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Six-vertex model partition functions

Domain wall boundary conditions

@ The domain wall partition function was evaluated in determinant form by lzergin:

ZasM(ZT1, -y Tns YL, Ynit) =
inj=1(1 — twiy;) o [ 1-t) }
H1gi<jgn(xi —z)(Yi — Yj5) (1 — tasy;) (1 — ay;) 1<i,j<n

@ This is precisely what appears on the right hand side of Example 1(b).
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Six-vertex model partition functions

Off-diagonally symmetric boundary conditions

o Off-diagonally symmetric boundary conditions were introduced by Kuperberg. They
involve the corner vertices:

- Tl >

o Configurations on this lattice are in one-to-one correspondence with off-diagonally
symmetric ASMs (OSASMs).
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Six-vertex model partition functions

Off-diagonally symmetric boundary conditions

@ Kuperberg evaluated this partition function as a Pfaffian:

ZosasMm(21, ..., Ton;t) =

11 (A —twizy) o [ (A= )(@i — ;)

(1 — t{L’i.’L'j)(l — CEZ'CE]')

1<i<j<2n (s — ;) 1<i<j<2n

e This is precisely what appears on the right hand side of Example 2(b).
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Six-vertex model partition functions

Reflecting domain wall boundary conditions

@ The six-vertex model has also been studied on a lattice with reflecting boundary

conditions:
«— i,’_’,
o B
«— :fz
s B
e B
Y1 Y2 Y3
T T T

e This quantity is important in quantum spin-chains with open boundary conditions.

o Configurations on this lattice are in one-to-one correspondence with U-turn ASMs

(UASMs).
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Six-vertex model partition functions

Reflecting domain wall boundary conditions

@ The partition function was evaluated in determinant form by Tsuchiya:

ZUASM(T1, -+ s Tn; Y1, 15+ - Yn, Tnst) =
i (1 —tzay;) (1 — tzy5)
[icicicn@i — ) (Y — y;) (1 — tasa;) (1 — F:Gy5)
1-1
(1= tagy;) (1 =t g;) (1 — zay;) (1 — xiﬂj)} 1<i,j<n

x det

@ This matches what appears on the right hand side of Example 3(b).
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