

The Hyper-Kamiokande Project

Ryan Terri (QMUL)

ESSvSB Meeting Lund, Sweden, 13-14 March 2014

Neutrino Oscillation: Open Questions

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +c_{23} & +c_{23} \\ 0 & -s_{23} & +c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_{13}e^{+i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} & +s_{12} & 0 \\ -s_{12} & +c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\theta_{23}: \text{ "atm." mixing angle} \qquad \theta_{13} \qquad \theta_{12}: \text{ "solar" mixing angle} \\ \left(C_{ij} = \cos \theta_{ij}, S_{ij} = \sin \theta_{ij}\right) \\ P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\alpha i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta i}^{*}U_{\beta j}^{*}U_{\alpha j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}\right] \sin^{2}\left(\frac{\Delta m_{ij}^{*}L}{4E}\right) + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}\right] + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}\right] + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}^{*}U_{\beta j}\right] + 2\sum_{i>j} \operatorname{Im}\left[U_{\beta i}U_{\beta j}^{*}U_{\beta j}^{*}U_$$

Unknown which mass eigenstate is lightest Unknown what δ_{CP} value is Unknown is θ_{23} is 45° (40° +5°/-2°) Unknown if U_{PMNS} is unitary or not

```
\Delta m_{ij}^2 = m_i^2 - m_j^2
L = distance travelled (km)
E = neutrino energy (GeV)
```


Hyper-Kamiokande

Electrical Machinery Room

Access Tunnel

Letter of Intent, Hyper-K WG arXiv:1109.3262 [hep-ex]

System

Cavity (Lining)

Water Cherenkov Detector

Total Volume: 0.99 Mton Inner Volume: 0.74 Mton Fiducial Volume: 0.56 Mton (10 compartments*) Outer Volume: 0.2 Mton Total Longth 24 T. W. 25x Super-K

99000 20" PMTs (20% photo-coverage) in Inner Detector (ID) 25000 8" PMTs for Outer Detector (OD) *still being optimized

Also includes neutrino beam from J-PARC in experimental definition

Compart ment

The Hyper-Kamiokande Project

Four International Open Meetings (2012-2014) @ IPMU, Japan.
Formed international working groups.

August 21-23, 2012 http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=7 January 14-15, 2013 http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=10 June 21-22, 2013 http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=23 January 27-28, 2014 http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=29

Please look at the slides from the meetings for detailed information on topics

Possible Locations

2 possible locations: Tochibora & Mozumi (current site of SK) Both sites are 2.5° off-axis & 295km from beam target at J-PARC

Tochibora: ~650 m rock, 1755 mwe; HK can be built there with current techniques Mozumi: deeper cavern than SK (~800 m) Rock quality comparable w/ Tochibura More geologic tests underway

Tank Design

All major parts of the HK tank has been designed

Support structure
 Cable for inner PMT
 Cable for outer PMT
 Network/Power cable
 Hub / Front End Electronics

: Inner photo-sensor (20")

: Outer photo-sensor (8")

Separation

wall

8" HPDs 20" high-QE PMTs

EGADS: demonstrating safety & effectiveness of Gd-doped water 240 inward-facing PMTs

EGADS used to test high-QE PMTs

Has 227 PMTs (R3600; currently in SK) for reference for photo-detector evaluation

1kton WC Prototype

•Prototype (1kton, $\sim 10 \times 10 \times 10$ m³) for R&D test approved in Japan as Grant-in-Aid: \sim USD 1.7M/5 years (2013-17).

- It's one of the 20 proposals selected each year from all areas in science.
- Main feasibility studies:
 - Photosensor and corresponding support structure
 - Liners
 - Leak water collection detection
 - DAQ
 - Electronics
 - Calibration system

• Location site (J-PARC, KEK, Kamioka) being discussed.

Overall Project Schedule

- Overall HK construction: ~7 years
- Assuming full funding starting in 2016.

Overall Project Schedule

- Overall HK construction: ~7 years
- Assuming full funding starting in 2016.

J-PARC Upgrades

- Plan for upgrade to the J-PARC beam line pointed at HK is in development
 - Goal to increase power for running a 1.5MW*yr through various improvements in J-PARC accelerators and neutrino beam line
 - Please see proceeding from T. Ishida from NuFact2013 (arXiv:1311.5287 [hep-ex])
- Lol to J-PARC being developed for this plan as well as new near detectors in an intermediate location
 - 1-2 km from neutrino target
 - Complementary designs to constrain flux & cross section uncertainties
 - Both have water targets
 - Submit April 2014

Hyper-Kamiokande Physics

Multi-purpose detector

Atmospheric Neutrino Oscillations Beam Neutrino Oscillations Solar Neutrino Oscillations

Proton Decay Searches

Relic Supernova Neutrinos Other Astrophysical Neutrinos Neutrino geophysics Exotic Searches Etc.

3v:7v for beam neutrinos

- Hierarchy is unknown, but NH is true.
- True $\delta_{CP} = 0.0$; $\sin^2 2\theta_{13} = 0.10$; Maximal mixing $\sin^2 2\theta_{23} = 1.0$
- Degenerate solution exists at 3σ in the beam only case.

Mass Hierarchy Sensitivity

• Sensitivity mainly depends on θ_{23} , δ and slightly on the MH itself.

- 3σ mass hierarchy determination for $\sin^2\theta_{23} > 0.42$ (0.43) for normal (inverted) hierarchy for 10yr data taking.
- <u>Caveat</u>: the $\Delta \chi^2$ method to determine the number of σ 's is used.

Proton Decay Sensitivities

Year

- 10 times better sensitivity than SK
- HK surpasses limits in ~1 yr
 - p → e⁺π⁰: 1.3x10³⁵ yr
 - p → $\overline{\nu}$ K+: 2.5x10³⁴ yr
 - Many other modes:

• e.g.: $n \to (e,\mu)(\pi,\rho,\omega,\eta)$: 10¹⁴⁻³⁵ yr

Approval Status

- R&D budget (w/ WC proto-type) for Hyper-K approved in 2013.
- Recommended by HEP community as one of the two major large scale projects: http://www.jahep.org/office/doc/201202_hecsubc_report.pdf
- KEK Roadmap includes Hyper-K:

http://kds.kek.jp/getFile.py/access?sessionId=1&resId=0&materialId=0&confId=11728

- Cosmic Ray community endorses HK as large scale project.
- Just received outcome from Science Council of Japan
 - HK one of 27 projects selected as most important (In Japanese): http://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-22-t188-1.pdf
 - Prepare report for MEXT for road map of big projects this year (2014)
- Proposals from other countries are currently being written
 - Includes EU (UK has bridging funds) and Canada
 - US waiting on results of P5 before proposals can be considered

Summary

- Hyper-Kamiokande's physics program is well suited to address remaining issues in neutrino oscillations
 - Part of a larger physics program including BSM searches and astro(particle) physics
- Base detector design is understood
 - Still lots of R&D to be done to optimize physics and costs for HK tank
 - Beam upgrade and new near detectors at J-PARC proposed
- Should have clearer picture of Hyper-Kamiokande's funding status in the next year or so

BACKUPS

Sensitivity for θ_{23} Octant and CPV

- θ_{22} octant sensitivity.
- Thickness of the band corresponds to the uncertainty from δ_{CP} .

• We can expect discrimination between $\sin^2\theta_{23}$ 0.4-0.6, w/ limited discrimination b/w 0.45-0.55

•Excluded $3\sigma \delta_{CP}$ fraction. 3 14 Thickness of the band corresponds to the uncertainty from $\sin^2 2\theta_{23}$ Sensitivity to CP-violation is limited under both hierarchy assumptions.

8" HPD Prototype

High voltage module (2ch 10kV/500V Max.)

HV module and preamplifier are packed and waterproofed

 \rightarrow No HV line in water

300 - 650 (420 max.) nm

Bialkali Borosilicate glass 4 - 9 × 10⁴ 1.7 ns 2.7 ns 0.62 ns (σ) 100 pC (1.5 × 104 p.e.)

Ten 8" HPDs were made for long-term testing

Hybrid Photodetector (HPD)

- ~8kV supply voltage + Avalanche diode multiplication
 - High voltage to focus photoelectrons into the small AD (5-20mm ϕ)
 - Better 1p.e. measurement capability
 - Better timing resolution, faster response
- Simple mechanical structure
 - Axial symmetric response
 - Lower production cost, shorter production period

Water Column

Tokai Intermediate Tank for Unoscillated Spectrum

NEW signal Originally detectable signal