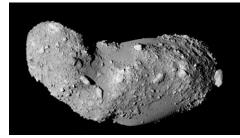
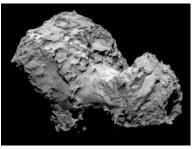


INGMAR IrradiatioN de Glaces et Météorites Analysées par Réflectance VIS-IR


Rosario BRUNETTO Institut d'Astrophysique Spatiale Bât 121 91405 Orsay, France rosario.brunetto@ias.u-psud.fr

Marie GODARD

Centre de Sciences Nucléaires et de Sciences de la Matière, Bât 104, 91405 Orsay, France marie.godard@csnsm.in2p3.fr


Small Solar System Bodies

Itokawa, JAXA

Wild 2, NASA

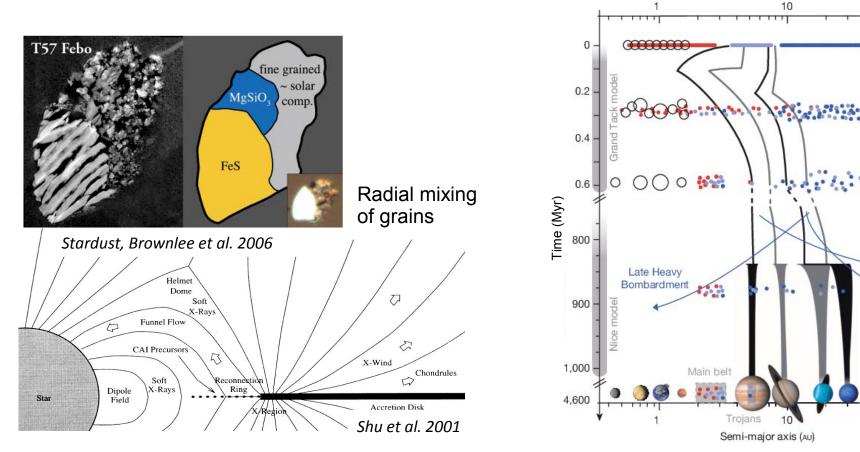
67P/C-G, ESA

100

Accretion

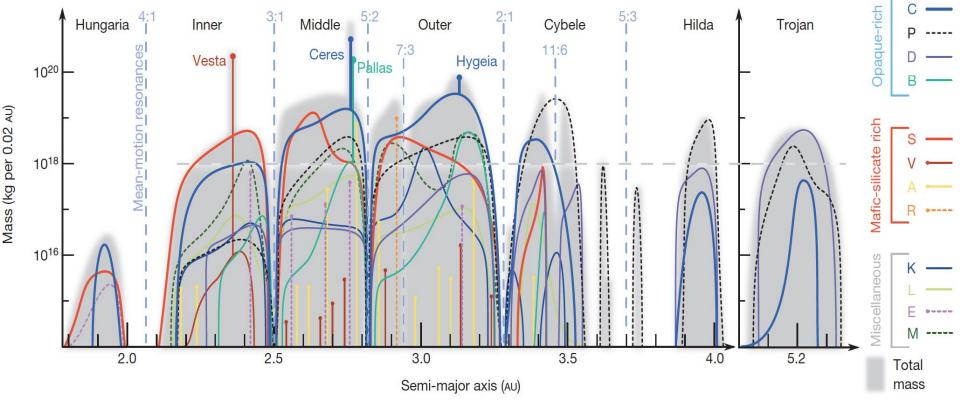
disk

Radial mixing


Mass

removal

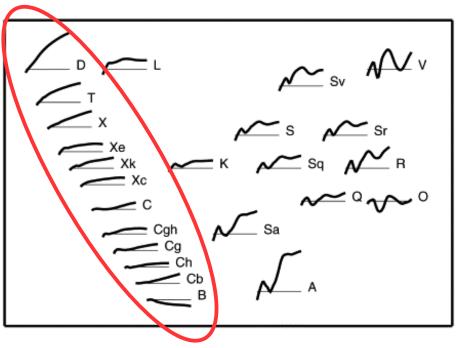
Second mass removal


Kuiper belt

100

Walsh et al. 2011 ; Morbidelli, Levison, Gomes, Bottke, et al.

The distribution of asteroids: a new view of the Main Asteroid Belt

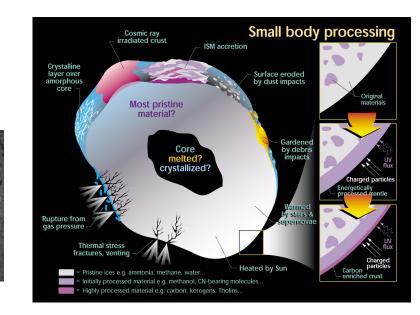


DeMeo & Carry 2014

"Excluding the four most massive asteroids, primitive material (C-, P-types) account for more than half main-belt and Trojan asteroids by mass"

 \rightarrow huge biases in the meteorite collections

Compositional information obtained though VIS-NIR reflectance observations \rightarrow taxonomy

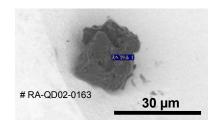

DeMeo et al. 2009 Asteroid Taxonomy

Microscopy – reflectance – ion irradiation

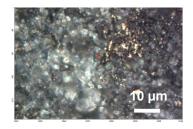
Largely studied for the Moon and S-type Asteroids. Open questions for primitive bodies.

Space weathering

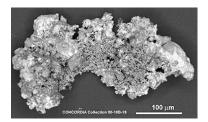
The majority of small solar system bodies is affected by weathering processes induced by solar wind and cosmic ions. Interpreting observed reflectance spectra requires the comprehension of mechanisms determining surface evolution.

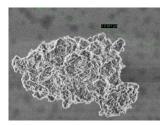

NASA

Extraterrestrial materials


Particles from asteroid Itokawa collected by Hayabusa

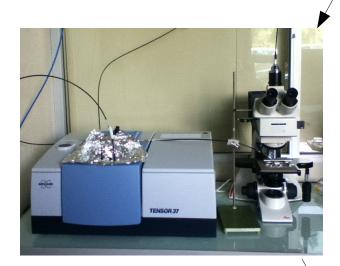
JAXA


Asteroids


Primitive meteorites

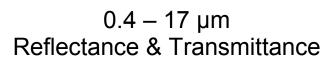
IDPs & Micrometeorites from Antarctica

Comet Wild 2 particles collected by Stardust

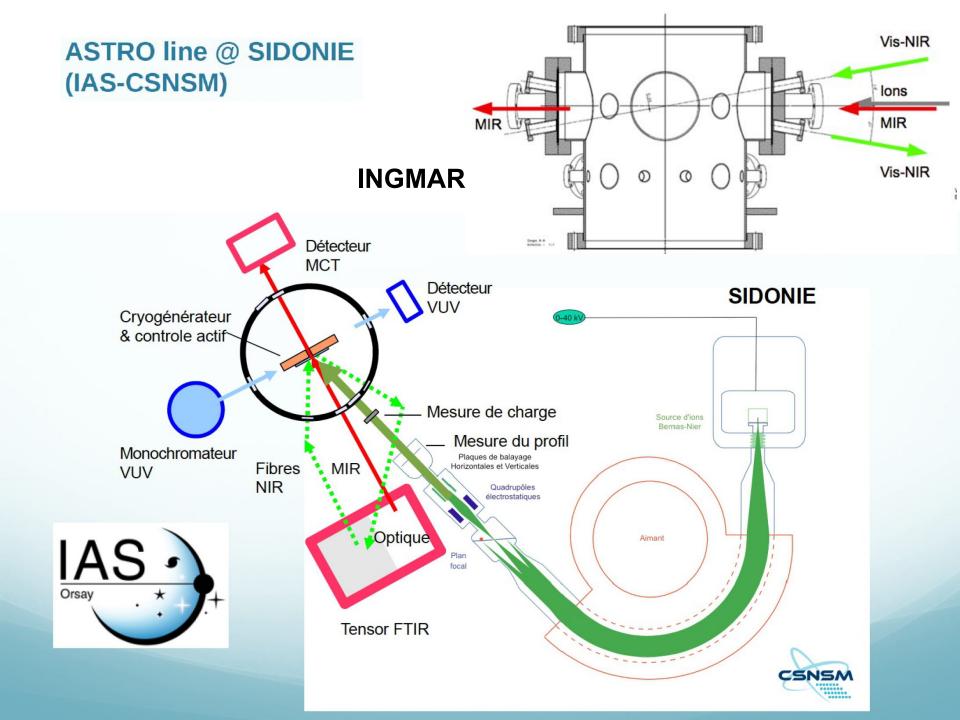

Ion irradiation experiments

Bibring 1978, Langevin 1978, Borg et al. 1983, 1998, Benit et al. 1987, Strazzulla et al. 1983, etc.

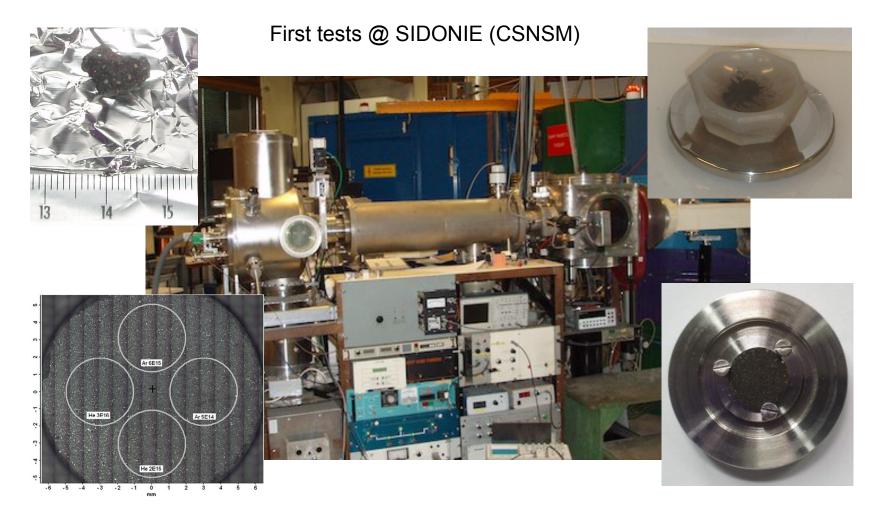
Laboratory experiments can help understanding surface weathering and spectral variations of small bodies. The majority of VIS-NIR studies has been performed on high albedo objects. Few studies have been dedicated to low albedo (primitive) objects.


INGMAR

IrradiatioN de Glaces et Météorites Analysées par Réflectance VIS-IR



Micro-spectroscopic reflectance measurements on cometary and asteroid particles, and their analogs


Ion irradiation of meteorites (and ices) rich in carbon and in-situ analysis by reflectance & transmittance

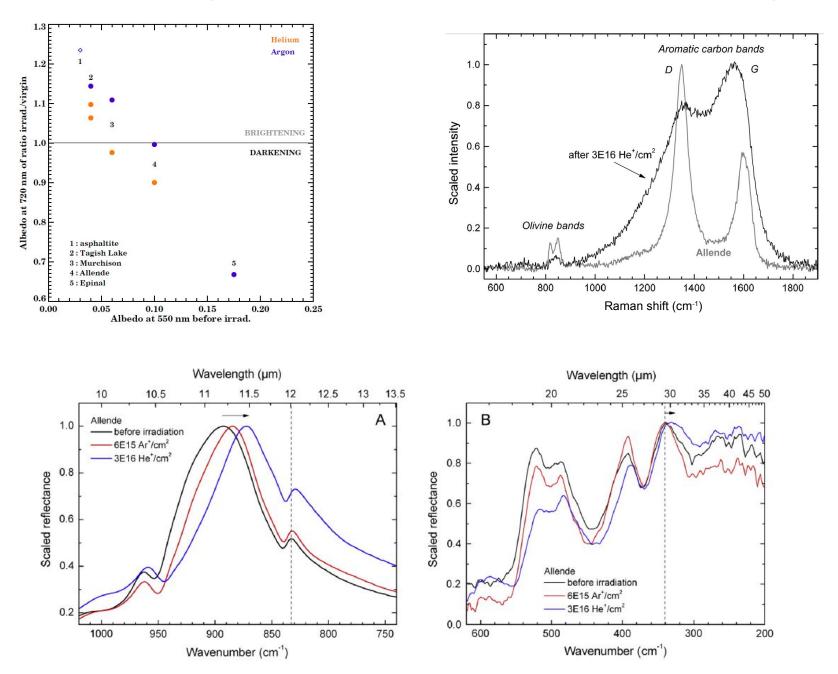
Spectra to be compared with telescopic and in-situ observations => towards a complete scenario for the irradiation-induced evolution of carbon-rich surfaces

Personnels participant au projet

Nom	Grade	Fonction	Laboratoire/organisme	
Rosario Brunetto	CR2	Coordinateur du projet Irradiation et réflectance	IAS, Orsay	
Philippe Duret	AI-CNRS	Technicien Montage et adaptations	IAS, Orsay	
Obadias Mivumbi	AI-BIATOS	Technicien Montage et adaptations	IAS, Orsay	
Emmanuel Dartois	DR2	Expérimentateur Spectroscopie IR	IAS, Orsay	
Donia Baklouti	MdC	Expérimentatrice Préparation et analyse	IAS, Orsay	
Jean Duprat	DR2	Responsable collection micrométéorites	CSNSM, Orsay	
Cécile Engrand	DR2	Préparation et analyse d'échantillons	CSNSM, Orsay	
Marie Godard	MdC	Irradiation, transmission, modélisation	CSNSM, Orsay	
Dominique Ledu	IE	Implantation ionique (responsable du service)	CSNSM, Orsay	
Lucie Delauche	Т	Préparation et microscopie	CSNSM, Orsay	
Frank Fortuna	IR	Implantation ionique et microscopie électronique	CSNSM, Orsay	
Cateline Lantz	Doctorante	Préparation, irradiation, analyse, application astro	LESIA, Obs Paris-Meudon	
Maria Antonietta Barucci	Prof	Comparaison observations	LESIA, Obs Paris-Meudon	
Eric Quirico	Prof	Préparation et analyse d'analogues	IPAG, Grenoble	
Mathilde Faure	Doctorante	Préparation et analyse d'analogues	IPAG, Grenoble	

Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies

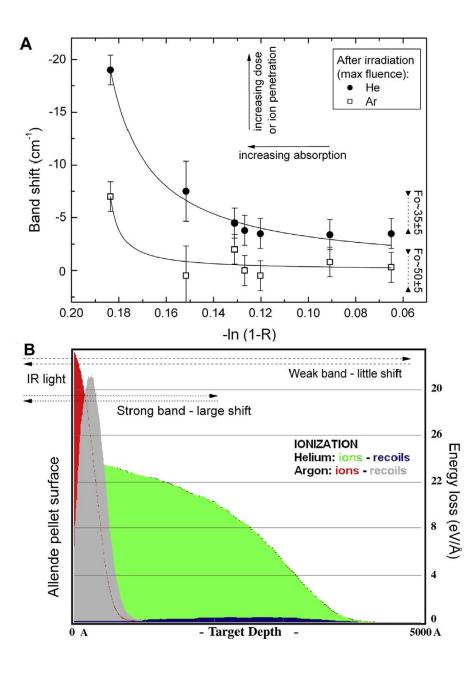
 \rightarrow Icarus, 2014

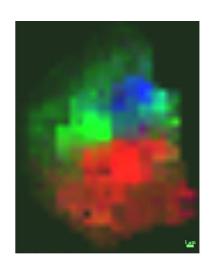

 \rightarrow A&A, 2015

R. Brunetto^{a,*}, C. Lantz^b, D. Ledu^c, D. Baklouti^a, M.A. Barucci^b, P. Beck^d, L. Delauche^c, Z. Dionnet^a, P. Dumas^e, J. Duprat^c, C. Engrand^c, F. Jamme^e, P. Oudayer^a, E. Quirico^d, C. Sandt^e, E. Dartois^a

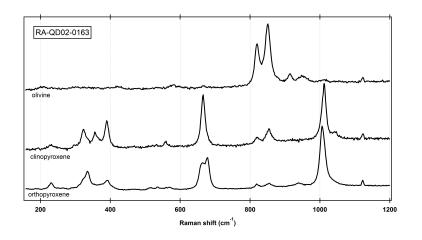
Ion irradiation of the Murchison meteorite: VIS - MIR spectroscopic results

C. Lantz^{1,2}, R. Brunetto³, M. A. Barucci¹, E. Dartois³, J. Duprat⁴, C. Engrand⁴, M. Godard⁴, D. Ledu⁴, and E. Quirico⁵


VIS-IR and Raman spectra: modification of silicates and of the aromatic carbon component

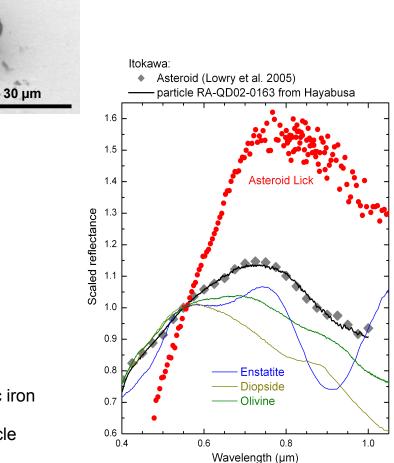


Effects on Mg/ Fe ratio


Ion	He ⁺		Ar ⁺	
Energy (keV)	40		40	
Max fluence (ions cm ⁻²)	3E16		6E15	
Penetration range (nm)	300 ± 80		40 ± 15	
Initial S _e (MeV/(mg/cm ²))	0.48		0.80	
Initial S_n (MeV/(mg/cm ²))	0.021		2.5	
Energy loss (%)	Ions	Recoils	Ions	Recoils
Ionizations	85.4	2.5	18.5	22.9
Vacancies	0.2	0.5	0.3	3.5
Phonons	1.8	9.6	1.4	53.4

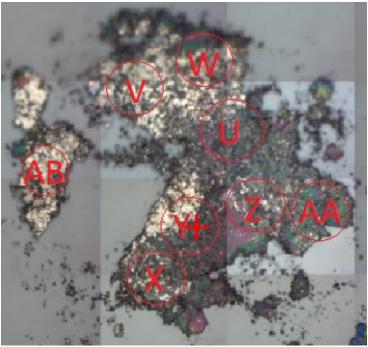
Irradiation timescales of **10³–10⁴ yrs** in the main asteroid belt => very efficient rejuvenating processes

Enstatite Diopside Olivine

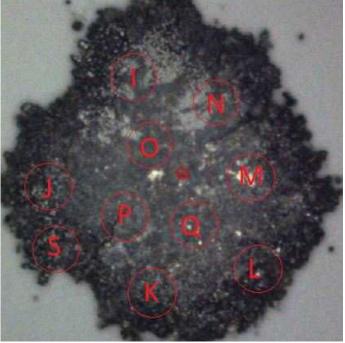


We estimate a 0.11% volume fraction of metallic iron particle inclusions in the host silicate matrix and upper limit timescales of 2 Myr for this particle

RA-QD02-0163


Visible-IR and Raman micro-spectroscopic investigation of three Itokawa particles collected by Hayabusa: mineralogy and degree of space weathering based on non-destructive analyses.

Bonal L.¹, Brunetto R.², Beck P.¹, Dartois E.², Dionnet Z.², Djouadi Z.², Duprat J.³, Füri E.⁴, Kakazu Y.³, Montagnac G.⁵, Oudayer P.², Quirico E.¹, and Engrand C.³



Primitive Antarctic Micrometeorites (CSNSM)

(Duprat et al. 2010, Engrand et al. 2011, Dartois et al. 2013)

FgF DC06-04-16

Sc DC06-11-715

Preliminary results show very low albedo (0.01-0.05) compatible to cometary nuclei

Schedule:

- 2013 Validation of INGMAR experimental approach First irradiation of meteorites and ex-situ reflectance Design and construction of the vacuum chamber Acquisition of the pumping system First test of micro-reflectance on Itokawa grains First applications to observations
- 2014 New irradiation on CM meteorite Acquisition of optical and spectroscopic components New measurements on two grains from Itokawa Tests with grains of the GIADA team (Rosetta) First tests with micrometeorites reflectance Assembling vacuum chamber and pumping system Coupling vacuum chamber - spectroscopy Coupling in-situ irradiation - reflectance Renewal of the platform SIDONIE
- 2015 Irradiation of different classes of meteorites Irradiation of analogue samples Micro-reflectance of micrometeorites Multi-analysis (electron microscopy, etc.) Develop a weathering scenario for low albedo objects Applications to astronomical observations
- 2016 ...- Extension of INGMAR to micrometeorites and ices Line open to external collaborations (outside the consortium) Applications for space missions

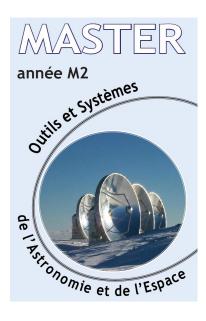
(Completed) (Completed) (Completed) (Completed) (Completed) (Completed)

(Completed) (Completed) (Completed) (Completed) (Completed) (Completed) (Completed) (Completed)

Detailed budget plan of the project:

	Financements acquis	Demandes de financement			
		2015	2016	2017	>2018
PNP	14.5 k€	17 k €	13 k€	13 k €	-
R&D P2IO	74.5 k€				
TP P2IO	12 k€				
Crédits labo	2 k€				
Autres CNRS					
Ministère					
Régions : DIM-ACAV	10 k€				
CNES					
Contrat					
TOTAL	113 k€	17 k €	13 k€	13 k €	

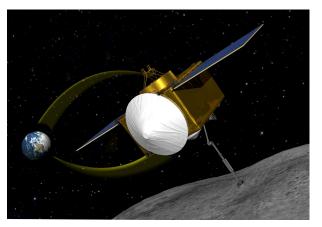
Detailed expenses on P2IO R&D budget:

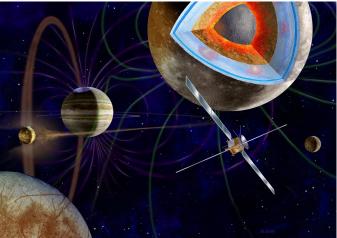

Element	Expense	Year
Pumping system	11.3 k€	2013
Spectroscopic adaptations and detectors	18.5 k€	2013
Vacuum chamber and mechanics	9.4 k€	2013-2014
Other optical elements	1.5 k€	2014
Computers	2.9 k€	2014
Sample holder and translation system	2.3 k€	2014
TOTAL EXPENDED	45.9 k€	
Cryogenic system and ice preparation	30 k€	2015
TOTAL TO BE EXPENDED	30 k€	

P2IO context

Activity based on a close collaboration IAS - CSNSM in Orsay, two laboratories of P2IO. It will make available an experimental setup to the community working on ion irradiation of solids. INGMAR can be used to perform **ion irradiation / implantation of any solid in a large range of temperatures, monitored in-situ by visible to IR reflectance and transmittance spectroscopy**.

 \rightarrow opportunity for other applications (solar cells, thin films, etc.) besides Astrophysics \rightarrow different communities


The INGMAR setup is already planned to be used also by students attending specific courses. A series of TP ("Travaux pratiques") within « Environnement spatial, implantations ioniques et spectroscopie » for students of the **M2 OSAE (Outils et Systèmes de l'Astronomie et de l'Espace)** is planned for February 2015. More activities shall be planned in the future, once the system will be fully operational.


Mission context: Rosetta, New Horizons, Hayabusa 2, OSIRIS-REx, JUICE

It is developed in the frame of a very favorable international context, thanks to upcoming space missions OSIRIS-REx (NASA) and Hayabusa 2 (JAXA), designed to perform sample returns of primitive asteroids rich in organic compounds.

In the longer term, the implementation of a dedicated irradiation platform for solids of astrophysical applications may provide a fundamental support to the **JUICE mission (ESA)**.

